Volume 13 · Number 1 · Pages 128–129
Active Vision: A Broader Comparative Perspective Is Needed

Lars Chittka & Peter Skorupski

Download the full text in
PDF (72 kB)

> Citation > Similar > References > Add Comment

Abstract

Open peer commentary on the article “Missing Colors: The Enactivist Approach to Perception” by Adrián G. Palacios, María-José Escobar & Esteban Céspedes. Upshot: We sympathize with the view that visual information is often acquired by active sampling of the environment, for example, through scanning movements. Not all vision is (en-)active, however - humans can capture important details of a visual scene at a glance, for example. The strategies of active sampling in various animals depend substantially on the structure of their visual systems and the representational capacities of their brains.

Citation

Chittka L. & Skorupski P. (2017) Active vision: A broader comparative perspective is needed. Constructivist Foundations 13(1): 128–129. http://constructivist.info/13/1/128

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

References

Beer R. D. (2003) The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4): 209–243. ▸︎ Google︎ Scholar
Brembs B. (2011) Towards a scientific concept of free will as a biological trait: Spontaneous actions and decision making in invertebrates. Proceedings of the Royal Society London B 278: 930–939. ▸︎ Google︎ Scholar
Chittka L. & Skorupski P. (2011) Information processing in miniature brains. Proceedings of the Royal Society London B 278: 885–888. ▸︎ Google︎ Scholar
Dawkins M. S. & Woodington A. (2000) Pattern recognition and active vision in chickens. Nature 403: 652–655. ▸︎ Google︎ Scholar
Grassmann H. (1853) Zur Theorie der Farbenmischung. Poggendorff’s Annalen der Physik und Chemie 89: 69–84. ▸︎ Google︎ Scholar
Joubert O. R., Rousselet G. A., Fabre-Thorpe M. & Fize D. (2009) Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise. Journal of Vision 9(1): 2. ▸︎ Google︎ Scholar
Justice E. D., Macedonia N. J., Hamilton C & Condron B. (2012) The simple fly larval visual system can process complex images. Nature Communications 3: 1156. ▸︎ Google︎ Scholar
Kim A. J., Fitzgerald J. K. & Maimon G. (2015) Cellular evidence for efference copy in Drosophila visuomotor processing. Nature Neuroscience 18(9): 1247–1255. ▸︎ Google︎ Scholar
Kirchner H. & Thorpe S. J. (2006) Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited. Vision Research 46(11): 1762–1776. ▸︎ Google︎ Scholar
Lubbock J. (1882) Ants, bees and wasps: A record of observations on the habits of social Hymenoptera. Kegan Paul, Trench, Trubner, and Co, London. ▸︎ Google︎ Scholar
Nityananda V., Skorupski P. & Chittka L. (2014) Can bees see at a glance? The Journal of Experimental Biology 217(11): 1933–1939. ▸︎ Google︎ Scholar
Purkinje J. (1825) Über die Scheinbewegungen, welche im subjectiven Umfang des Gesichtsinnes vorkommen. Bulletin der naturwissenschaftlichen Sektion der Schlesischen Gesellschaft 4: 9–10. ▸︎ Google︎ Scholar
Skorupski P. & Chittka L. (2011) Is colour cognitive? Optics and Laser Technology 43(2): 251–260. ▸︎ Google︎ Scholar
Skorupski P. & Sillar K. T. (1986) Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. Journal of Neurophysiology 55(4): 689–695. ▸︎ Google︎ Scholar
Spaethe J. & Briscoe A. D. (2005) Molecular characterization and expression of the UV opsin in bumblebees: Three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. Journal of Experimental Biology 208(12): 2347–2361. ▸︎ Google︎ Scholar
Strutt J. W. (1874) Insects and the colours of flowers. Nature 11: 6. ▸︎ Google︎ Scholar
Theunissen L. M. & Troje N. F. (2017) Head stabilization in the pigeon: Role of vision to correct for translational and rotational disturbances. Frontiers in Neuroscience 11: 551. ▸︎ Google︎ Scholar
Thoen H. H., How M. J., Chiou T. H. & Marshall J. (2014) A different form of color vision in mantis shrimp. Science 343(6169): 411–413. ▸︎ Google︎ Scholar
Thompson E., Palacios A. & Varela F. J. (1992) Ways of coloring: Comparative color vision as a case study for cognitive science. Behavioral and Brain Sciences 15(1): 1–74. ▸︎ Google︎ Scholar
Thorpe S., Fize D. & Marlot C. (1996) Speed of processing in the human visual system. Nature 381: 520–522. ▸︎ Google︎ Scholar
VanRullen R. & Thorpe S. J. (2002) Surfing a spike wave down the ventral stream. Vision Research 42(23): 2593–2615. ▸︎ Google︎ Scholar
von Holst E. & Mittelstaedt H. (1950) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 27: 464–476. ▸︎ Google︎ Scholar
Wakakuwa M., Kurasawa M., Giurfa M. & Arikawa K. (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92: 464–467. ▸︎ Google︎ Scholar
Walker S., Stafford P. & Davis G. (2008) Ultra-rapid categorization requires visual attention: Scenes with multiple foreground objects. Journal of Vision 8: 21. ▸︎ Google︎ Scholar
Wolfe J. (2000) Visual attention. In: Valois K. K. D. (ed.) Seeing. Academic Press, San Diego CA: 335–386. ▸︎ Google︎ Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.