Volume 13 · Number 2 · Pages 265–266
The EMG Properties Limit Ultimate Classification Accuracy in Machine Learning for Prosthesis Control

Richard F. ff. Weir

Download the full text in
PDF (78 kB)

> Citation > Similar > References > Add Comment

Abstract

Open peer commentary on the article “Applying Radical Constructivism to Machine Learning: A Pilot Study in Assistive Robotics” by Markus Nowak, Claudio Castellini & Carlo Massironi. Upshot: Machine learning (ML) has been applied in many forms and under many names over the years to the problem of mapping arrays of surface electromyogram (EMG) signals measured on the arm of a person with an amputation and then trying to correlate those signals to the control of multi-degree-of-freedom prosthetic arms. While being intrigued by the idea of the interactive machine learning (iML) component of the study, I am not surprised that iML did not do noticeably better than standard approaches. The issue, as demonstrated by many researchers, is not our ability to do ML but rather the fundamental problem associated with using EMG as the inputs to the ML system and the clinical issues associated with stable acquisition of those signals.

Citation

Weir R. F. (2018) The emg properties limit ultimate classification accuracy in machine learning for prosthesis control. Constructivist Foundations 13(2): 265–266. http://constructivist.info/13/2/265

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

References

Ajiboye A. B. & Weir R. F. ff. (2005) A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3): 280–291. ▸︎ Google︎ Scholar
Atkins D., Heard D. C. Y. & Donovan W. H. (1996) Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. Journal of Prosthetics and Orthotics 8: 2–11. ▸︎ Google︎ Scholar
Baschuk C. M., Hoeun P., Katzenberger L. M., Latour D. A., Passero T. & Tompkins E. J. (2016) Utilization of pattern recognition with patients initially contraindicated for myoelectric control of upper-limb prostheses. In: Proceedings of the first international symposium on innovations in amputation surgery and prosthetic technologies, Chicago IL: 79–81. ▸︎ Google︎ Scholar
Childress D. S. & Weir R. F. ff. (2004) Control of limb prostheses. In: Smith D. G., Michael J. W. & Bowker J. H. (eds.) Atlas of amputations and limb deficiencies: Surgical, prosthetic and rehabilitation principles. Third edition. American Academy of Orthopaedic Surgeons (AAOS) Rosemont IL: 175–198. ▸︎ Google︎ Scholar
Englehart K. & Hudgins B. (2003) A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering 50(7): 848–854. ▸︎ Google︎ Scholar
Farrell T. R. & Weir R. F. ff. (2008) A comparison of electrode implantation and targeting on pattern classification accuracy for prosthesis control. IEEE Transactions on Biomedical Engineering 55(9): 2198–2211. ▸︎ Google︎ Scholar
Farrell T. R. & Weir R. F. ff. (2008) Analysis window induced controller delay for multifunctional prostheses. In: Proceedings of the University of New Brunswick’s Myoelectric Controls/Powered Prosthetics Symposium (MEC ’08) Fredericton, New Brunswick, Canada: 13–15 August 2008: 225–228. ▸︎ Google︎ Scholar
Fougner A., Scheme E., Chan A. D. C., Englehart K. & Stavdahl O. (2011) Resolving the limb position effect in myoelectric pattern recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(6): 644–651. ▸︎ Google︎ Scholar
Herberts P., Almström C., Kadefors R. & Lawrence P. (1973) Hand control via myoelectric patterns. Acta Orthopaedica Scandinavica 44: 389–409. ▸︎ Google︎ Scholar
Hudgins B., Parker P. & Scott R. N. (1993) A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering 40(1): 82–94. ▸︎ Google︎ Scholar
Lawrence P. D. & Kadefors R. (1974) Classification of myoelectric patterns for the control of a prosthesis. In: Herberts P., Kadefors R., Magnusson R. & Petersen I. (eds.) The control of upper-extremity prostheses and orthoses. C. C. Thomas, Springfield IL: 190–200. ▸︎ Google︎ Scholar
Lock B. A., Simon A. M., Stubblefield K. & Hargrove L. J. (2011) Prosthesis-guided training for practical use of pattern recognition control of prostheses. In: MEC 11 Raising the Standard. Proceedings of the 2011 MyoElectric Controls/Powered Prosthetics Symposium. University of New Brunswick, Fredericton CA: 61–64. ▸︎ Google︎ Scholar
Parker P. A. & Scott R. N. (1985) Myoelectric control of prostheses. Critical Reviews in Biomedical Engineering 13(4): 283–310. ▸︎ Google︎ Scholar
Scheme E. & Englehart K. (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. Journal of Rehabilitation Research and Development 48(6): 643–659. ▸︎ Google︎ Scholar
Sensinger J. W., Lock B. A. & Kuiken T. A. (2009) Adaptive pattern recognition of myoelectric signals: Exploration of conceptual framework and practical algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(3): 270–278. ▸︎ Google︎ Scholar
Simon A. M., Lock B. A. & Stubblefield K. A. (2012) Patient training for functional use of pattern recognition-controlled prostheses. Journal of Prosthetics and Orthotics 24(2): 56–64. ▸︎ Google︎ Scholar
Simon A. M., Lock B. A., Stubblefield K. A. & Hargrove L. J. (2011) Prosthesis-guided training increases functional wear time and improves tolerance to malfunctioning inputs of pattern recognition–controlled prostheses. In: MEC 11 Raising the Standard. Proceedings of the 2011 MyoElectric Controls/Powered Prosthetics Symposium. University of New Brunswick, Fredericton CA: 65–69. ▸︎ Google︎ Scholar
Taylor D. R. & Finley F. R. (1974) Multiple-axis prosthesis control by muscle synergies. In: Herberts P., Kadefors R., Magnusson R. & Petersen I. (eds.) The control of upper-extremity prostheses and orthoses. C. C. Thomas, Springfield IL: 181–189. ▸︎ Google︎ Scholar
Uellendahl J. & Tyler J. (2016) A case series study of pattern recognition for upper-limb prosthesis control. In: Proceedings of the first international symposium on innovations in amputation surgery and prosthetic technologies, Chicago IL: 68. ▸︎ Google︎ Scholar
Zhou P., Lowery M. M., Englehart K. B., Huang H., Li G., Hargrove L., Dewald J. P. A. & Kuiken T. A. (2007) Decoding a new neural machine interface for control of artificial limbs. Journal of Neurophysiology 98(5): 2974–2982. ▸︎ Google︎ Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.