Volume 13 · Number 3 · Pages 362–373
What Is a Cognizing Subject? Construction, Autonomy and Original Causation

Niall Palfreyman & Janice Miller-Young

Download the full text in
PDF (2071 kB)

> Citation > Similar > References > Add Comment


Context: Realism has difficulty using the language of mind-independent dynamics to explicate autonomous cognition. Constructivism has difficulty locating the purposive originator of adaptive cognitive reconstruction. Enactivism derives purpose from self-maintaining dynamics, but has difficulty describing how the autopoietic subject emerges. Problem: We seek to resolve these difficulties by asking: What kind of dynamically embodied system could ever be autonomous in the sense of being the causally accountable originator of its own purposeful, yet spontaneous, cognitive constructions? Method: We identify causal accountability as the key obstacle to naturalizing autonomy, and employ a multi-level selection argument from evolutionary theory to overcome it. We demonstrate the feasibility of our solution in a computer simulation model. Results: Our argument leads us to postulate the Stabilization Thesis: Autonomy, learning, evolution and life are expected properties of dynamical systems whose structure upwardly conditions their dynamical flow, and whose flow downwardly selects their structural variation. Such systems exhibit stabilization - the spontaneous, purposeful construction of hierarchical modularity. This generates three claims: no pre-programmed behavior, architecture or learning rules can implement autonomy; autonomy entails non-local flows that establish identity by downwardly stabilizing its structure against exogenous irritations; constructivism’s postulate of a cognizing subject entails a view of concepts as fundamentally dynamical skills (as opposed to categories. Implications: Flows establish a causally accountable identity that defines the originator of meaning-construction, and their self-stabilization enables the enactive emergence of autopoietic, and hence autonomous, systems. Keywords: Autonomy, causal origination, conceptualization, dynamical stabilization, learning, multi-level selection.


Palfreyman N. & Miller-Young J. (2018) What is a cognizing subject? Construction, autonomy and original causation. Constructivist Foundations 13(3): 362–373. http://constructivist.info/13/3/362

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)


Ashby W. R. (1960) Design for a Brain. Second edition. Chapman and Hall, London. ▸︎ Google︎ Scholar
Auffray C. & Nottale L. (2008) Scale relativity theory and integrative systems biology: 1: Founding principles and scale laws. Progress in Biophysics and Molecular Biology 97: 79–114. ▸︎ Google︎ Scholar
Barandiaran X. E. & Egbert M. D. (2013) Norm-establishing and norm-following in autonomous agency. Artificial Life 91(2): 1–24. ▸︎ Google︎ Scholar
Barandiaran X. E. (2017) Autonomy and enactivism: Towards a theory of sensorimotor autonomous agency. Topoi 36 first (3): 409–430 http://cepa.info/4149
Barrett L. F., Quigley K. S. & Hamilton P. (2016) An active inference theory of allostasis and interoception in depression. Philosophical Transactions of the Royal Society B 371: 20160011. ▸︎ Google︎ Scholar
Barsalou L. (1999) Perceptual symbol systems. Journal of Behavioral and Brain Science 22: 577–660. ▸︎ Google︎ Scholar
Bekey G. A. (2005) Autonomous robots: From biological inspiration to implementation and control. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Bickhard M. H. (2000) Autonomy, function, and representation. Communication and Cognition – Artificial Intelligence 17(3–4): 111–131. ▸︎ Google︎ Scholar
Camazine S., Deneubourg J.-L., Franks N., Sneyd J., Theraulaz G. & Bonabeau E. (2001) Self-organization in biological systems. Princeton University Press, Princeton NJ. ▸︎ Google︎ Scholar
Clark A. (1997) Being there: Putting brain, body, and world together again. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Clark A. (1998) Time and mind. Journal of Philosophy XCV (7): 354–376. ▸︎ Google︎ Scholar
Cummins F. & De Jesus P. (2016) The loneliness of the enactive cell: Towards a bio-enactive framework. Adaptive Behavior 24(3): 149–159 http://cepa.info/3002
Dawkins R. (1996) Climbing mount improbable. W. W. Norton, New York. ▸︎ Google︎ Scholar
Dawkins R. (2008) The group delusion. New Scientist January 12: 17. ▸︎ Google︎ Scholar
Deacon T. W. (2011) Incomplete nature: How mind emerged from matter. W. W. Norton, New York. ▸︎ Google︎ Scholar
Deacon T. W. (2012) Incomplete nature. W. W. Norton, New York. ▸︎ Google︎ Scholar
Dent E. W. & Baas P. W. (2014) Microtubules in neurons as information carriers. Journal of Neurochemistry 129: 235–239. ▸︎ Google︎ Scholar
Edelman G. M. (1990) The remembered present. Basic Books, New York. ▸︎ Google︎ Scholar
Einstein A. (1916) Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 49: 769–822. ▸︎ Google︎ Scholar
Forgacs G. & Newman S. A. (2005) Biological physics of the developing embryo. Cambridge University Press, Cambridge. ▸︎ Google︎ Scholar
Friston K. (2009) The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences 13(7): 293–301. ▸︎ Google︎ Scholar
Glasersfeld E. von (1981) Einführung in den radikalen Konstruktivismus. In: Watzlawick P. (ed.) Die erfundene Wirklichkeit. Piper, München: 16–38. English translation in Watzlawick P. (ed.) (1984) The invented reality. W. W. Norton NY: 17–40 http://cepa.info/1360
Glasersfeld E. von (1995) Radical constructivism: A way of knowing and learning. Taylor & Francis, Bristol PA http://cepa.info/1462
Goodwin B. C. (1997) How the leopard changed its spots. Phoenix, London. ▸︎ Google︎ Scholar
Goodwin B. C. (2009) Genetic epistemology and constructionist biology. Biological Theory 4(2): 115–124. Originally published in 1982 http://cepa.info/4651
Harvey I. (2004) Homeostasis and rein control: From Daisyworld to active perception. In: Pollack J., Bedau M. A., Husbands P., Watson R. A. & Ikegami T. (eds.) Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems. MIT Press, Cambridge MA: 309‒314. ▸︎ Google︎ Scholar
Harvey I. (2015) The circular logic of Gaia: Fragility and fallacies, regulation and proofs. In: Andrews P., Caves L., Doursat R., Hickinbotham S., Polak F., Stepney S., Taylor T. & Timmis K. (eds.) Proceedings of the Thirteenth European Conference on Artificial Life 2015. The MIT Press, Cambridge MA: 90‒97. ▸︎ Google︎ Scholar
Harvey I. (2017) Going round in circles. In: Knibbe C., Beslon G., Parsons D., Misevic D., Rouzaud-Cornabas J., Bredèche N., Hassas S., Simonin O. & Soula H. (eds.) Proceedings of ECAL 2017. The MIT Press, Cambridge MA: 198‒199. ▸︎ Google︎ Scholar
Hilbert T. S., Renkl A., Kessler S. & Reiss K. (2008) Learning to prove in geometry: Learning from heuristic examples and how it can be supported. Learning and Instruction 18: 54–65. ▸︎ Google︎ Scholar
Hinton G. E. (2002) Training products of experts by minimizing contrastive divergence. Neural Computation 14(8): 1711–1800. ▸︎ Google︎ Scholar
Hinton G. E., Osindero S. & Teh Y. W. (2006) A fast learning algorithm for deep belief nets. Neural Computation 18(7): 1527–1554. ▸︎ Google︎ Scholar
Hofstadter D. R. (1996) Fluid concepts and creative analogies: Computer models of the fundamental mechanisms of thought. Basic Books, New York. ▸︎ Google︎ Scholar
Hossain D., Capi G. & Jindai M. (2017) Evolution of deep belief neural network parameters for robot object recognition and grasping. Procedia Computer Science 105: 153‒158. ▸︎ Google︎ Scholar
Hull D. L. (1980) Individuality and selection. Annual Review of Ecology, Evolution and Systematics 11: 311–332. ▸︎ Google︎ Scholar
Jonas H. (2011) The phenomenon of life: Toward a philosophical biology. Northwestern University Press, Evanston IL. Originally published in 1966. ▸︎ Google︎ Scholar
Juarrero A. (1999) Dynamics in action: Intentional behavior as a complex system. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Juarrero A. (2002) Dynamics in action: Intentional behavior as a complex system. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Kalupahana D. J. (2011) A history of Buddhist philosophy: Continuity and discontinuity. Motilal Banarsidass, Delhi. ▸︎ Google︎ Scholar
Kashtan N. & Alon U. (2005) Spontaneous evolution of modularity and network motifs. PNAS 102(39): 13773–13778. ▸︎ Google︎ Scholar
Kauffman S. A. (2002) Investigations. Oxford University Press, New York. ▸︎ Google︎ Scholar
Kelso J. A. S. (1995) Dynamic patterns: The self-organization of brain and behaviour. Third edition. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Kim J. (1999) Making sense of emergence. Philosophical Studies 95: 3–6. ▸︎ Google︎ Scholar
Kirchhoff M., Parr T., Palacios E., Friston K. & Kiverstein J. (2018) The Markov blankets of life: Autonomy, active inference and the free energy principle. Journal of The Royal Society Interface 15(138): 20170792. ▸︎ Google︎ Scholar
Kolb D. A. (1983) Experiential learning: Experience as the source of learning and development. Prentice-Hall, Upper Saddle River NJ. ▸︎ Google︎ Scholar
Kull K. (2014) Adaptive evolution without natural selection. Biological Journal of the Linnean Society 112: 287–294. ▸︎ Google︎ Scholar
Laforge B., Guez D., Martinez M. & Kupiec J. J. (2005) Modeling embryogenesis and cancer: An approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation. Progress in biophysics and molecular biology 89(1): 93–120. ▸︎ Google︎ Scholar
Laland K. N. & Sterelny K. (2006) Perspective: Seven reasons (not) to neglect niche-construction. Evolution 60(9): 1751–1762. ▸︎ Google︎ Scholar
Lecointre G. (2018) The boxes and their content: What to do with invariants in biology? In: Gaudin T., Lacroix D., Maurel M.-C. & Pomerol J.-C. (eds.) Life sciences, information sciences. Wiley, London: 139–152. ▸︎ Google︎ Scholar
Lewis M. (2005) Bridging emotion theory and neurobiology through dynamic systems modeling. Behavioral and Brain Science 28: 169–245. ▸︎ Google︎ Scholar
Longo G. & Montévil M. (2014) Perspectives on organisms. Springer, Berlin. ▸︎ Google︎ Scholar
Lowe R., Dodig-Crnkovic G. & Almer A. (2017) Predictive regulation in affective and adaptive behaviour: An allostatic-cybernetics. In: Vallverdú J., Mazzara M., Talanov M., Distefano S. & Lowe R. (eds.) Advanced research on biologically inspired cognitive architectures. IGI Global, Hershey PA: 149–176. ▸︎ Google︎ Scholar
Luhmann N. (1986) The autopoiesis of social systems. In: Geyer F. & van der Zouwen J. (eds.) Sociocybernetic paradoxes. Sage, London: 172–192 http://cepa.info/2717
Marton F. (2014) Necessary conditions of learning. Routledge, London. ▸︎ Google︎ Scholar
Maturana H. R. & Poerksen B. (2004) From being to doing: The origins of the biology of cognition. Carl Auer Verlag, Heidelberg. ▸︎ Google︎ Scholar
Maturana H. R. & Varela F. J. (1980) Autopoiesis and cognition: The realization of the living. Reidel, Dordrecht. ▸︎ Google︎ Scholar
McFarland D. (2008) Guilty robots, happy dogs: The question of alien minds. Oxford University Press, Oxford. ▸︎ Google︎ Scholar
Montévil M. & Mossio M. (2015) Biological organisation as closure of constraints. Journal of Theoretical Biology 372: 179–191 http://cepa.info/3629
Montévil M. (2018) Possibility spaces and the notion of novelty: From music to biology. Synthese: Online First. ▸︎ Google︎ Scholar
Montévil M., Mossio M., Pocheville A. & Longo G. (2016) Theoretical principles for biology: Variation. Progress in Biophysics and Molecular Biology 122(1): 36–50. ▸︎ Google︎ Scholar
Montévil M., Speroni L., Sonnenschein C. & Soto A. M. (2016) Modeling mammary organogenesis from biological first principles: Cells and their physical constraints. Progress in biophysics and molecular biology 122(1): 58–69. ▸︎ Google︎ Scholar
Muntean I. & Wright C. D. (2007) Autonomous agency AI, and allostasis: A biomimetic perspective. Pragmatics & Cognition 15(3): 485–513. ▸︎ Google︎ Scholar
Newman S. A. & Müller G. B. (2000) Epigenetic mechanisms of character origination. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 288(4): 304–317. ▸︎ Google︎ Scholar
Oyama S., Griffiths P. E. & Gray R. D. (eds.) (2001) Cycles of contingency: Developmental systems and evolution. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Palmer R. (2004) Symmetry breaking and the evolution of development. Science 306: 828–833. ▸︎ Google︎ Scholar
Pattee H. & Kull K. (2011) Between physics and semiotics. In: Emmeche C. & Kull K. (eds.) Towards a semiotic biology: Life is the action of signs. Imperial College Press, London: 213–233. ▸︎ Google︎ Scholar
Pólya G. (1973) How to solve it: A new aspect of mathematical method. Princeton University Press, Princeton NJ. ▸︎ Google︎ Scholar
Peters A., McEwen B. S. & Friston K. (2017) Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Progress in Neurobiology 156: 164–188. ▸︎ Google︎ Scholar
Pezzulo G., Rigoli F. & Friston K. (2015) Active Inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology 134: 17–35. ▸︎ Google︎ Scholar
Piaget J. (1970) Structuralism. Translated by C. Maschler. Routledge & Kegan Paul, London. French original published in 1968 http://cepa.info/4510
Rosen R. (1991) Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New York. ▸︎ Google︎ Scholar
Sabar A. (2014) The outsider: The life and times of Roger Barker. Kindle Single. Amazon Digital Services, Seattle WA. ▸︎ Google︎ Scholar
Salakhutdinov R. & Hinton G. (2009) Deep Boltzmann Machines. In: Van Dyk D. & Welling M. (eds.) Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics. Clearwater Beach FL: 448–455. ▸︎ Google︎ Scholar
Saunders P. T., Koeslag J. H. & Wessels J. A. (1998) Integral rein control in physiology. Journal of Theoretical Biology 194: 163–173. ▸︎ Google︎ Scholar
Schulkin J. (2011) Social allostasis: Anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience 2: 111. ▸︎ Google︎ Scholar
Searle J. (1980) Minds, brains and programs. Behavioral and Brain Sciences 3(3): 417–457. ▸︎ Google︎ Scholar
Seth A. (2010) Measuring autonomy and emergence via Granger causality. Artificial Life 16(2): 179–196. ▸︎ Google︎ Scholar
Seth A. (2014) The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies. In: Metzinger T. & Windt J.-M. (eds.) Open MIND. MIND Group, Frankfurt am Main: 35 (T) ▸︎ Google︎ Scholar
Seth A. (2015) The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies. In: Metzinger T. & Windt J.-M. (eds.) Open MIND. MIND Group, Frankfurt am Main: 35 (T) ▸︎ Google︎ Scholar
Smith L. & Thelen E. (2003) Development as a dynamic system. Trends in Cognitive Science 7: 343–348. ▸︎ Google︎ Scholar
Sober E. & Wilson D. S. (1998) Unto others: The evolution and psychology of unselfish behavior. Harvard University Press, Cambridge MA. ▸︎ Google︎ Scholar
Soto A. M., Longo G., Miquel P.-A., Montévil M., Mossio M., Perret N., Pocheville A. & Sonnenschein C. (2016) Toward a theory of organisms: Three founding principles in search of a useful integration. Progress in Biophysics and Molecular Biology. 122(1): 77–82. ▸︎ Google︎ Scholar
Soto A. M., Longo G., Montévil M. & Sonnenschein C. (2016) The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Progress in Biophysics and Molecular Biology 122(1): 16‒23. ▸︎ Google︎ Scholar
Sterling P. (2004) Principles of allostasis. In: Schulkin J. (ed.) Allostasis, homeostasis, and the costs of adaptation. Cambridge University Press, Cambridge MA: 17–64. ▸︎ Google︎ Scholar
Sterling P. (2012) Allostasis: A model of predictive regulation. Physiology & Behavior 106(1): 5–15. ▸︎ Google︎ Scholar
Stern S., Dror T., Stolovicki E., Brenner N. & Braun E. (2007) Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge. Molecular Systems Biology 3:106–114. ▸︎ Google︎ Scholar
Stewart J. (1992) Life = cognition: The epistemological and ontological significance of artificial life. In: Varela F. J. & Bourgine P. (eds.) Toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life. 475–483. ▸︎ Google︎ Scholar
Thompson E. & Varela F. J. (2001) Radical embodiment: Neuronal dynamics and consciousness. Trends in Cognitive Sciences 5: 418–425 http://cepa.info/2085
Thompson E. (2007) Mind in life: Biology, phenomenology and the sciences of mind. Harvard University Press, Cambridge MA http://constructivist.info/3/2/117
Uexküll J. von (1982) The theory of meaning. Semiotica 42(1): 25–82 http://cepa.info/4509
Ulanowicz R. E. (1998) A phenomenology of evolving networks. Systems Research and Behavioural Science 15: 373–383. ▸︎ Google︎ Scholar
Ulanowicz R. E. (2000) Growth and development: Ecosystems phenomenology. ToExcel Press, Lincoln NE. ▸︎ Google︎ Scholar
Ulanowicz R. E. (2011) Quantitative methods for ecological network analysis and its application to coastal ecosystems. In: Wolanski E. & McLusky D. S. (eds.) Treatise on estuarine and coastal science, Volume 9. Academic Press, Waltham MA: 37–57. ▸︎ Google︎ Scholar
Varela F. J. (1979) Principles of biological autonomy. Elsevier, New York. ▸︎ Google︎ Scholar
Vernon D. (2013) Interpreting Ashby − but which one? Constructivist Foundations 9(1) 111–113 http://constructivist.info/9/1/111
Vernon D. (2014) Artificial cognitive systems. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Vernon D. (2016) Reconciling constitutive and behavioural autonomy: The challenge of modelling development in enactive cognition. Intellectica 65: 63–79 http://cepa.info/4499
Vernon D., Lowe R., Thill S. & Ziemke T. (2015) Embodied cognition and circular causality: On the role of constitutive autonomy in the reciprocal coupling of perception and action. Frontiers in Psychology 6: 1660. ▸︎ Google︎ Scholar
Vouloutsi V., Lallée S. & Verschure P. F. M. J. (2013) Modulating behaviors using allostatic control. In: Lepora N. F., Mura A., Krapp H. G., Verschure P. F. M. J. & Prescott T. J. (eds.) Biomimetic and biohybrid systems: Proceedings of the second international conference, Living machines 2013. Springer, Berlin: 287–298. ▸︎ Google︎ Scholar
Watson A. & Lovelock J. (1983) Biological homeostasis of the global environment: The parable of Daisyworld. Tellus 35B: 284‒289. ▸︎ Google︎ Scholar
Watson A. & Mason J. (2005) Mathematics as a constructive activity: Learners generating examples. Lawrence Erlbaum, Mahwah NJ. ▸︎ Google︎ Scholar
West-Eberhard M. J. (2005) Developmental plasticity and the origin of species differences. PNAS 102 (Supplement 1): 6543–6549. ▸︎ Google︎ Scholar
Wilson E. O. (2008) Altruism is no family matter. New Scientist January 12: 6–7. ▸︎ Google︎ Scholar
Ziemke T. (1998) Adaptive behavior in autonomous agents. Presence 7(6): 564–587. ▸︎ Google︎ Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.