Volume 7 · Number 2 · Pages 131–140
Questioning Constructive Reverse Mathematics

Iris Loeb

Download the full text in
PDF (339 kB)

> Citation > Similar > References > Add Comment


Context: It is often suggested that the methodology of the programme of Constructive Reverse Mathematics (CRM) can be sufficiently clarified by a thorough understanding of Brouwer’s intuitionism, Bishop’s constructive mathematics, and classical Reverse Mathematics. In this paper, the correctness of this suggestion is questioned. Method: We consider the notion of a mathematical programme in order to compare these schools of mathematics in respect of their methodologies. Results: Brouwer’s intuitionism, Bishop’s constructive mathematics, and classical Reverse Mathematics are historical influences upon the origin and development of CRM, but do not give a full “methodological explanation” for it. Implications: Discussion on the methodological issues concerning CRM is needed. Constructivist content: It is shown that the characterisation and comparison of varieties of constructive mathematics should include methodological aspects (as understood from their practices).

Key words: constructive mathematics, reverse mathematics, mathematical programme, methodology


Loeb I. (2012) Questioning constructive reverse mathematics. Constructivist Foundations 7(2): 131–140. http://constructivist.info/7/2/131

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

Similar articles

Müller K. H. (2008) Methodologizing Radical Constructivism. Recipes for RC-Designs in the Social Sciences
Larochelle M. & Désautels J. (2007) Concerning Ernst von Glasersfeld’s Contribution to Intellectual Freedom: One Interpretation, One Example
Umpleby S. A. (2016) Second-Order Cybernetics as a Fundamental Revolution in Science
Bettoni M. C. (2011) Constructing a Beginning in 1985
Bettoni M. C. (2007) The Yerkish Language: From Operational Methodology to Chimpanzee Communication


Berger J. & Bridges D. S. (2006) A Bizarre Property Equivalent to the Pi01-fan theorem. Logic Journal of the IGPL 14(6): 867–871. ▸︎ Google︎ Scholar
Berger J. & Bridges D. S. (2007) A fan-theoretic equivalent of the antithesis of Specker’s theorem. Indagationes Mathematicae, New Series 18(2): 195–202. ▸︎ Google︎ Scholar
Berger J. & Bridges D. S. (2008) The anti-Specker property, a Heine-Borel property, and uniform continuity. Archive for Mathematical Logic 46 (7–8): 583–592. ▸︎ Google︎ Scholar
Berger J. & Ishihara H. (2005) Brouwer’s fan theorem and unique existence in constructive analysis. Mathematical Logic Quarterly 51(4): 360–364. ▸︎ Google︎ Scholar
Berger J. (2005) Constructive equivalents of the uniform continuity theorem. Journal UCS 11(12): 1878–1883. ▸︎ Google︎ Scholar
Berger J. (2005) The fan theorem and uniform continuity. In: Cooper S. B., Löwe B. & Torenvliet L. (eds.) New computational paradigms. Springer Lecture Notes in Computer Science 3526: 18–22. ▸︎ Google︎ Scholar
Berger J. (2006) The logical strength of the uniform continuity theorem. In: Beckmann A., Berger U., Löwe B. & Tucker J. V. (eds.) Logical approaches to computational barriers. Springer Lecture Notes in Computer Sciences 3988: 35–39. ▸︎ Google︎ Scholar
Berger J. (2008) The weak König lemma and uniform continuity. Journal of Symbolic Logic 73(3): 933–993. ▸︎ Google︎ Scholar
Berger J. (2009) A decomposition of Brouwer’s fan theorem. Journal of Logic and Analysis 1: 1–8. ▸︎ Google︎ Scholar
Berger J., Bridges D. S. & Schuster P. (2006) The fan theorem and unique existence of maxima. The Journal of Symbolic Logic 71(2): 713–720. ▸︎ Google︎ Scholar
Bishop E. & Bridges D. S. (1985) Constructive analysis. Springer, Berlin. ▸︎ Google︎ Scholar
Bishop E. (1967) Foundations of constructive analysis. McGraw-Hill, New York. ▸︎ Google︎ Scholar
Brattka V. & Gherardi G. (2011) Effective choice and boundedness principles in computable analysis. The Bulletin of Symbolic Logic, 17(1): 73–117. ▸︎ Google︎ Scholar
Bridges D. & Richman F. (1987) Varieties of constructive mathematics. Cambridge University Press, Cambridge. ▸︎ Google︎ Scholar
Bridges D. & Vîta L. (2006) Techniques of constructive analysis. Springer, Heidelberg. ▸︎ Google︎ Scholar
Bridges D. S. & Diener H. (2007) The pseudo-compactness of [0, 1] is equivalent to the uniform continuity theorem. Journal of Symbolic Logic 72(4): 1379–1384. ▸︎ Google︎ Scholar
Bridges D. S. & Diener H. (2010) The anti-Specker property, positivity, and total boundedness. Mathematical Logic Quarterly 56(4): 434–441. ▸︎ Google︎ Scholar
Bridges D. S. (2008) A reverse look at Brouwer’s fan theorem. In: van Atten M., Boldini P., Bourdeau M. & Heinzmann G. (eds.) One hundred years of intuitionism (1907–2007) Birkhäuser, Basel: 316–325. ▸︎ Google︎ Scholar
Bridges D. S. (2009) Constructive mathematics. In: Zalta E. N. (ed.) The Stanford encyclopedia of philosophy, Summer 2009 edition. http://plato.stanford.edu/archives/sum2009/entries/mathematics-constructive/
Brouwer L. E. J. (1907) Over de grondslagen der wiskunde. Ph.D. thesis, University of Amsterdam. Reprinted with additional material in van Dalen D. (2001) L.E. J. Brouwer en de grondslagen van de wiskunde. Epsilon Uitgaven, Utrecht. ▸︎ Google︎ Scholar
Brouwer L. E. J. (1921) Besitzt jede reelle Zahl eine Dezimalbruchentwicklung? Mathematische Annalen 83, 201–210. ▸︎ Google︎ Scholar
Diener H. & Loeb I. (2009) Sequences of real functions on [0,1] in constructive reverse mathematics. Annals of Pure and Applied Logic 157(1): 50–61. ▸︎ Google︎ Scholar
Diener H. (2008) Compactness under constructive scrutiny. Ph.D. thesis, University of Canterbury. ▸︎ Google︎ Scholar
Diener H. (2010) Constructions and constructive reverse mathematics. Presentation at the workshop “Constructive mathematics: Proofs and computation,” 7–11 June 2010, Benedictine nunnery on Fraueninsel, Germany. Slides available at http://www.mathematik.unimuenchen.de/~cm2010/diener.pdf ▸︎ Google︎ Scholar
Ernest P. (1992) The nature of mathematics: Towards a social constructive account. Science & Education 1: 89–100. ▸︎ Google︎ Scholar
Friedman H. (1975) Some systems of second order arithmetic and their use. Proceedings of the 17th international congress of mathematicians, Vancouver BC. ▸︎ Google︎ Scholar
Iemhoff R. (2009) Intuitionism in the Philosophy of Mathematics. In: Zalta E. N. (ed.) The Stanford encyclopedia of philosophy, Winter 2009 edition. http://plato.stanford.edu/archives/win2009/entries/intuitionism/
Ishihara H. & Schuster P. (2004) Compactness under constructive scrutiny. Mathematical Logic Quarterly 50(6): 540–550. ▸︎ Google︎ Scholar
Ishihara H. (1992) Continuity properties in constructive mathematics. Journal of Symbolic Logic 57(2): 557–565. ▸︎ Google︎ Scholar
Ishihara H. (2004) Informal constructive reverse mathematics. Centre for Discrete Mathematics and Theoretical Computer Science CDMTCS-229. http://www.cs.auckland.ac.nz/CDMTCS/researchreports/229hajime.pdf
Ishihara H. (2005) Constructive reverse mathematics: Compactness properties. from sets and types to topology and analysis. Oxford Logic Guides. Volume 48. Oxford University Press, Oxford: 245–267. ▸︎ Google︎ Scholar
Ishihara H. (2006) Reverse mathematics in Bishop’s constructive mathematics. Philosophia Scientiae, Cahier Spécial 6: 43–59. http:// philosophiascientiae.revues.org/pdf/406
Lerman S. (1989) Constructivism, mathematics and mathematics education. Educational Studies in Mathematics 20: 211–223. ▸︎ Google︎ Scholar
Loeb I. (2005) Equivalents of the (weak) fan theorem. Annals of Pure and Applied Logic 132(1): 51–66. ▸︎ Google︎ Scholar
Loeb I. (2008) Factoring out intuitionistic theorems: Continuity principles and the uniform continuity theorem. Proceedings of the 4th conference on computability in Europe 2008 (CiE 2008): 379–388. ▸︎ Google︎ Scholar
Loeb I. (2008) Indecomposability of R and R\{0} in constructive reverse mathematics. Logic Journal of the IGPL 16(3): 269–273. ▸︎ Google︎ Scholar
Loeb I. (2009) Indecomposability of negative dense subsets of R in constructive reverse mathematics. Logic Journal of the IGPL 17(2): 173–177. ▸︎ Google︎ Scholar
Mandelkern M. (1988) Limited omniscience and the Bolzano-Weierstrass principle. Bulletin of the London Mathematical Society 20, 319–320. ▸︎ Google︎ Scholar
Mandelkern M. (1989) Brouwerian counterexamples. Mathematics Magazine 62(1): 3–27. ▸︎ Google︎ Scholar
Moschovakis J. R. (2003) Classical and constructive hierarchies in extended intuitionistic analysis. Journal of Symbolic Logic 68(3): 1015–1043. ▸︎ Google︎ Scholar
Moschovakis J. R. (2008) Varieties of reverse constructive mathematics. CUNY Computational Logic Seminar. http://www.math.ucla.edu/~joan/cuny08handout.pdf
Oliveri G. (2007) A realist philosophy of mathematics. College Publications, London. ▸︎ Google︎ Scholar
Sambin G. (in press) Real and ideal in constructive mathematics. In: Dybjer P., Lindström S., Palmgren E. & Sundholm G. (eds.) Epistemology versus ontology: Essays on the philosophy and foundations of mathematics in honour of Per Martin-Löf. Springer, New York. ▸︎ Google︎ Scholar
Schuster P. (2003) Unique existence, approximate solutions, and countable choice. Theoretical Computer Science 305(1–3): 433–455. ▸︎ Google︎ Scholar
Schwichtenberg H. (2005) A direct proof of the equivalence between Brouwer’s fan theorem and König’s lemma with a uniqueness hypothesis. J. UCS, 11(12): 2086–2095. ▸︎ Google︎ Scholar
Simpson S. G. (1985) Reverse mathematics. In: Nerode A. & Shore R. A. (eds.) Proceedings of the AMS-ASL summer institute on recursion theory: 461–472. ▸︎ Google︎ Scholar
Simpson S. G. (1988) Partial realizations of Hilbert’s program. Journal of Symbolic Logic 53(2): 349–363. ▸︎ Google︎ Scholar
Simpson S. G. (1999) Subsystems of second-order arithmetic. Springer, New York. ▸︎ Google︎ Scholar
Toftdal M. (2004) Calibration of ineffective theorems of analysis in a constructive context. Master’s thesis, University of Aarhus. ▸︎ Google︎ Scholar
Troelstra A. S. & van Dalen D. (1988) Constructivism in mathematics. An introduction. Volume 1. North-Holland, Amsterdam. ▸︎ Google︎ Scholar
Troelstra A. S. (1974) Note on the fan theorem. Journal of Symbolic Logic 39(3): 584–596. ▸︎ Google︎ Scholar
Troelstra A. S. (1991) History of constructivism in the 20th century. ITLI Prepublication Series ML-91–05, University of Amsterdam. ▸︎ Google︎ Scholar
van Dalen D. (1998) L. E. J. Brouwer’s intuitionism: A revolution in two installments. 13th annual IEEE symposium on logic in computer science (LICS’98): 228–241. ▸︎ Google︎ Scholar
Veldman W. (2004) Project: Intuitionistic reverse mathematics. Project description. http://www.onderzoekinformatie.nl/en/oi/nod/onderzoek/OND1307986
Veldman W. (2005) Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s alternative. Report no. 0509, IMAPP, Radboud University Nijmegen. ▸︎ Google︎ Scholar
Zach R. (2009) Hilbert’s program. In: Zalta E. N. (ed.) The Stanford encyclopedia of philosophy, Spring 2009 edition. http://plato.stanford.edu/archives/spr2009/entries/hilbert-program/

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.