Volume 9 · Number 1 · Pages 7–16
Constructivism and Computation: Can Computer-Based Modeling Add to the Case for Constructivism?

Manfred Füllsack

Download the full text in
PDF (982 kB)

> Citation > Similar > References > Add Comment

Abstract

Problem: Is constructivism contradicted by the reductionist determinism inherent in digital computation? Method: Review of examples from dynamical systems sciences, agent-based modeling and artificial intelligence. Results: Recent scientific insights seem to give reason to consider constructivism in line with what computation is adding to our knowledge of interacting dynamics and the functioning of our brains. Implications: Constructivism is not necessarily contradictory to digital computation, in particular to computer-based modeling and simulation. Constructivist content: When viewed through the lens of computation, in many of its aspects constructivism seems in line with what currently is held to be valid in science.

Key words: Computation, observation, emergence, downward causation, simulation, modeling, artificial intelligence, robotics

Citation

Füllsack M. (2013) Constructivism and computation: Can computer-based modeling add to the case for constructivism? Constructivist Foundations 9(1): 7–16. http://constructivist.info/9/1/007

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

Similar articles

Riegler A., Stewart J. & Ziemke T. (2013) Computation, Cognition and Constructivism: Introduction to the Special Issue
Füllsack M. (2012) Communication Emerging? On Simulating Structural Coupling in Multiple Contingency
Schmidt S. J. (2010) Self-Organisation and Learning Culture
Schmidt S. J. (2010) Radical Constructivism: A Tool, not a Super Theory!
Proulx J. & Maheux J.-F. (2017) From Problem Solving to Problem Posing, and from Strategies to Laying Down a Path in Solving: Taking Varela’s Ideas to Mathematics Education Research

References

Alrøe H. F. & Noe E. (2012) Observing environments. Constructivist Foundations 8(1): 39–52. http://www.univie.ac.at/constructivism/journal/8/1/039.alroe
Andersen P. B., Emmeche C., Finnemann N. O. & Christiansen P. V. (eds.) (2000) downward causation: Minds, bodies and matter. Aarhus University Press, Aarhus. ▸︎ Google︎ Scholar
Ashby W. R. (1956) An introduction to cybernetics. Methnen, London. ▸︎ Google︎ Scholar
Axelrod R. (1984) The evolution of cooperation. Basic Books, New York. ▸︎ Google︎ Scholar
Axelrod R. (1997) The complexity of cooperation. Agent-based models of competition and collaboration. Princeton University Press, New Jersey. ▸︎ Google︎ Scholar
Bantam Dell, New York. ▸︎ Google︎ Scholar
Bechtel W. & Abrahamsen A. (2002) Connectionism and the mind. Parallel processing, dynamics, and evolution in networks. Blackwell, Cambridge MA. ▸︎ Google︎ Scholar
Bedau M. A. (1997) Weak emergence. Philosophical Perspectives 11: 375–399. ▸︎ Google︎ Scholar
Bedau M. A. (2002) Downward causation and the autonomy of weak emergence. Principia 6(1): 5–50. ▸︎ Google︎ Scholar
Bedau M. A. (2008) Is weak emergence just in the mind? Minds & Machines 18: 443–459. ▸︎ Google︎ Scholar
Bettoni M. & Eggs C. (2010) User-centred knowledge management: A constructivist and socialized view. Constructivist Foundations 5(3): 130–143. http://www.univie.ac.at/constructivism/journal/5/3/130.bettoni
Bettoni M. (1989) Ernst von Glasersfeld, un pioniere delle scienze cognitive. In: Glasersfeld E. von, Linguaggio e comunicazione nel costruttivismo radicale. CLUP, Milan: 7–21. ▸︎ Google︎ Scholar
Bettoni M. (2005) Wissenskooperation: Die Zukunft des Wissensmanagements. Lernende Organisation 25: 6–24. ▸︎ Google︎ Scholar
Campbell D. T. (1974) “Downward causation” in hierarchically organised biological systems. In: Ayala F. J. & Dobzhansky T. (eds.) Studies in the philosophy of biology: Reduction and related problems. Macmillan, London: 179–186. ▸︎ Google︎ Scholar
Castelfranchi C. (1998) Simulating with cognitive agents. The importance of cognitive emergence. In: Sichman J. S., Conte R. & Gilbert N. (eds.) Multi-agent systems and agent-based simulation. Springer, Berlin: 26–44. ▸︎ Google︎ Scholar
Ceccato S. & Zonta B. (1980) Linguaggio, consapevolezza, pensiero. Feltrinelli, Milano. ▸︎ Google︎ Scholar
Ceccato S. (1947) Essai de méthodologie opérationelle. In: Ceccato S., Un tecnico fra i filosofi. Marsilio, Padova: 261–302. ▸︎ Google︎ Scholar
Clark A. (2012) Whatever next? Predictive brains. situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36(3): 181–204. ▸︎ Google︎ Scholar
Clayton P. & Davies P. (eds.) (2006) The re-emergence of emergence: The emergentist hypothesis from science to religion. Oxford University Press, Oxford. ▸︎ Google︎ Scholar
Copeland J. & Proudfoot D. (2004) The computer, artificial intelligence, and the Turing test. In: Teuscher C. (ed.) Alan Turing: Life and legacy of a great thinker. Springer, Frankfurt am Main: 317–351. ▸︎ Google︎ Scholar
Dancy J. (1985) Introduction to contemporary epistemology. Blackwell, Oxford. ▸︎ Google︎ Scholar
Deacon T. (2011) Incomplete nature. How mind emerged from matter. Norton, New York. ▸︎ Google︎ Scholar
Der R. & Martius G. (2012) The playful machine. Springer, Berlin. ▸︎ Google︎ Scholar
Doya K., Ishii S., Pouget A. & Rao R. (eds.) (2007) Bayesian brain: Probabilistic approaches to neural coding. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Eigen M. & Schuster P. (1977) The hypercycle. A principle of natural self-organization. Springer, Berlin. ▸︎ Google︎ Scholar
Epstein J. M. (2006) Generative social science. Studies in agent-based computational modeling. Princeton University Press, Princeton. ▸︎ Google︎ Scholar
Füllsack M. (2011) Firstness – As seen from the perspective of complexity research. E-Logos, Journal for Philosophy 8: 2–19. ▸︎ Google︎ Scholar
Füllsack M. (2011) Gleichzeitige Ungleichzeitigkeiten. Eine Einführung in die Komplexitätsforschung. VS-Verlag, Wiesbaden. ▸︎ Google︎ Scholar
Füllsack M. (2012) Information, meaning and eigenforms. In the light of sociology, agent-based modeling and AI. Information 3(3): 331–343. ▸︎ Google︎ Scholar
Füllsack M. (2012) Observing productivity. What it might mean to be productive when viewed through the lens of Complexity Theory. Journal of Philosophical Economics 6(1): 2–23. ▸︎ Google︎ Scholar
Foerster H. von & Glasersfeld E. von (1999) Wie wir uns erfinden. Carl Auer, Heidelberg. ▸︎ Google︎ Scholar
Foerster H. von (1976) Objects: Tokens for (eigen-)behaviors. ASC Cybernetics Forum 8(3–4): 91–96. Reprinted in: Foerster H. von (2003) Understanding understanding: Essays on cybernetics and cognition. Springer, New York: 261–271. ▸︎ Google︎ Scholar
Foerster H. von (2003) Understanding understanding. Essays on cybernetics and cognition. Springer, New York. ▸︎ Google︎ Scholar
Fredkin E. (2003) Introduction to digital philosophy. International Journal of Theoretical Physics 42(2): 189–247. ▸︎ Google︎ Scholar
Friston K. (2009) The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences 13: 293–301. ▸︎ Google︎ Scholar
Friston K., Daunizeau J. & Kiebel S. (2009) Reinforcement learning or active inference? PLoS One 4(7): e6421. ▸︎ Google︎ Scholar
Gilbert N. (1995) Emergence in social simulation. In: Gilbert N. & Conte R. (eds.) Artificial societies: The computer simulation of social life. UCL Press, London: 144–156. ▸︎ Google︎ Scholar
Gillett E. (1998) Relativism and the social-constructivist paradigm. Philosophy, Psychiatry & Psychology 5(1): 37–48. ▸︎ Google︎ Scholar
Glasersfeld E. von (1995) Radical constructivism: A way of knowing and learning. Falmer Press, London. ▸︎ Google︎ Scholar
Harnad S. (1990) The symbol grounding problem. Physica D 42: 335–346. ▸︎ Google︎ Scholar
Harter M. R. (1967) Excitability cycles and cortical scanning: A review of two hypotheses of central intermittency in perception. Psychological Bulletin 68: 47–58. ▸︎ Google︎ Scholar
Hawking S. (1988) A brief history of time. ▸︎ Google︎ Scholar
Holland J. H. (1998) Emergence from chaos to order. Oxford University Press, Oxford. ▸︎ Google︎ Scholar
Hosoya T., Baccus S. A. & Meister M. (2005) Dynamic predictive coding by the retina. Nature 436(7): 71–77 ▸︎ Google︎ Scholar
Jantsch E. (1980) The self-organizing universe: Scientific and human implications of the emerging paradigm of evolution. Pergamon Press, New York. ▸︎ Google︎ Scholar
Kant I. (1981) Kritik der Urteilskraft. Werke in zwölf Bänden, Volume 10. Edited by W. Weischedel. Suhrkamp, Frankfurt am Main: Originally published in 1790. English translation: Kant I. (1952) The critique of judgement. Translated by J. C. Meredith. Clarendon Press, Oxford. ▸︎ Google︎ Scholar
Kauffman L. & Varela F. J. (1980) Form dynamics. Journal for Social and Biological Structure 3: 171–206. ▸︎ Google︎ Scholar
Kauffman L. (2005) EigenForm. Kybernetes 34(1/2): 129–150. ▸︎ Google︎ Scholar
Kauffman L. (2009) Reflexivity and eigenform. The shape of process. Constructivist Foundation 4(3): 121–137. Available at http://www.univie.ac.at/constructivism/journal/4/3/121.kauffman ▸︎ Google︎ Scholar
Kauffman S. (2000) Investigations. Oxford University Press, Oxford. ▸︎ Google︎ Scholar
Kim J. (1993) Supervenience and mind. Cambridge University Press, Cambridge MA. ▸︎ Google︎ Scholar
Knill D. & Pouget A. (2004) The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neuroscience 27(12): 712–719. ▸︎ Google︎ Scholar
Lehmann D., Strik W. K., Henggeler B., Koenig T. & Koukkou M. (1998) Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual Imagery and abstract thoughts. International Journal of Psychophysiology 29: 1–11. ▸︎ Google︎ Scholar
Luhmann N. (1995) Social systems. Stanford University Press, Stanford. German original published in 1984 as: Soziale Systeme. Grundriß einer allgemeinen Theorie. Suhrkamp, Frankfurt am Main. ▸︎ Google︎ Scholar
Maturana H. R. & Poerksen B. (2004) From being to doing. The origins of the biology of cognition. Carl-Auer, Heidelberg. ▸︎ Google︎ Scholar
Maturana H. R. & Varela F. J. (1980) Autopoiesis: The organization of the living. Reidel, Dordrecht. ▸︎ Google︎ Scholar
Maturana H. R. & Varela F. J. (1987) The tree on knowledge: The biological roots of human understanding. Shambhala, London. ▸︎ Google︎ Scholar
Maturana H. R. (1988) Reality: The search for objectivity or the quest for a compelling argument. The Irish Journal of Psychology 9(1): 25–82. Available at http://www.enolagaia.com/M88Reality.html ▸︎ Google︎ Scholar
Newman M. E. (2010) Networks: An introduction. Oxford University Press, Oxford UK. ▸︎ Google︎ Scholar
Nowak M. A. & Sigmund K. (1998) The dynamics of indirect reciprocity. Journal of Theoretical Biology 194: 561–574. ▸︎ Google︎ Scholar
Parsons T. & Shils E. A. (eds.) (1951) Toward a general theory of action. Harper and Row, New York. ▸︎ Google︎ Scholar
Pennisi E. (2012) Eco-evo effects up and down the food chain. Science 337 (6097): 906–907. ▸︎ Google︎ Scholar
Porr B. & Wörgötter F. (2005) What means embodiment for radical constructivists? Kybernetes 34(1/2): 105–117. ▸︎ Google︎ Scholar
Porr B. & Wörgötter F. (2006) Strongly improved stability and faster convergence of temporal sequence learning by utilising input correlations only. Neural Computation 18(6): 1380–1412. ▸︎ Google︎ Scholar
Prigogine I. (1980) From being to becoming. Time and complexity in the physical sciences. Freeman, San Fransisco CA. ▸︎ Google︎ Scholar
Rao R. & Ballard D. (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1): 79. ▸︎ Google︎ Scholar
Rapoport A. & Chammah A. M. (1965) Prisoner’s dilemma. University of Michigan Press, AnnArbor. ▸︎ Google︎ Scholar
Rieke F. (1999) Spikes. Exploring the neural code. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Robbins H. (1956) An empirical bayes approach to statistics. Proceedings of the Third Berkeley Symposium on mathematical statistics and probability 1: Contributions to the theory of statistics: 157–163. ▸︎ Google︎ Scholar
Sandri G. (2011) Turing 1948 vs. Gödel 1972. In: Franchi S. & Bianchini F. (eds.) The search for a theory of cognition. Early mechanisms and new ideas. Rodopi, Amsterdam: 299–311. ▸︎ Google︎ Scholar
Schmidhuber J. (1997) A computer scientist’s view of life, the universe, and everything. In: Freksa C. (ed.) Foundations of computer science: Potential – theory – cognition. Springer: 201–208. ▸︎ Google︎ Scholar
Shi Y. Q. & Sun H. (1999) Image and video compression for multimedia engineering. Fundamentals, algorithms, and standards. CRC Press, Boca Raton. ▸︎ Google︎ Scholar
Smith B. C. (1996) On the origin of objects. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Spencer-Brown G. (1969) Laws of form. Allen & Unwin, London. ▸︎ Google︎ Scholar
Steels L. (1999) The talking heads experiment. Words and meanings. VUB Press, Brussels. ▸︎ Google︎ Scholar
Sterelny K. (2003) Thought in a hostile world. The evolution of human cognition. Blackwell, Oxford. ▸︎ Google︎ Scholar
Strogatz S. (1994) Nonlinear dynamics and chaos. With applications to physics, biology, chemistry and engineering. Addison-Wesley, Boston. ▸︎ Google︎ Scholar
Tipler F. J. (1995) The physics of immortality. Macmillan, London. ▸︎ Google︎ Scholar
Wolfram S. (2002) A new kind of science. Wolfram-Science, Champaign IL. ▸︎ Google︎ Scholar
Zenil H. (ed.) (2012) A computable universe. Understanding and exploring nature as computation. World Scientific Publishing, University of Sheffield. ▸︎ Google︎ Scholar
Ziemke T. (2012) The construction of embodied agency: The other side of the system–environment coin. Constructivist Foundations 8(1): 52–54. http://www.univie.ac.at/constructivism/journal/8/1/052.ziemke
Zuse K. (1967) Rechnender Raum. Elektronische Datenverarbeitung 8: 336–344. ▸︎ Google︎ Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.