Volume 9 · Number 1 · Pages 93–101
Homeostats for the 21st Century? Simulating Ashby Simulating the Brain

Stefano Franchi

Download the full text in
PDF (1264 kB)

> Citation > Similar > References > Add Comment


Context: W. R. Ashby’s work on homeostasis as the basic mechanism underlying all kinds of physiological as well as cognitive functions has aroused renewed interest in cognitive science and related disciplines. Researchers have successfully incorporated some of Ashby’s technical results, such as ultrastability, into modern frameworks (e.g., CTRNN networks). Problem: The recovery of Ashby’s technical contributions has left in the background Ashby’s far more controversial non-technical views, according to which homeostatic adaptation to the environment governs all aspects of all forms of life. This thesis entails that life is fundamentally “heteronomous” and it is conceptually at odds with the autopoiesis framework adopted by Ashby’s recent defenders as well as with the primacy of autonomy in human life that most of the Western philosophical tradition upholds. The paper argues that the use of computer simulations focused on the more conceptual aspects of Ashby’s thought may help us recover, extend and consequently assess an overall view of life as heteronomy. Method: The paper discusses some computer simulations of Ashby’s original electro-mechanical device (the homeostat) that implement his techniques (double-feedback loops and random parameter-switching). Results: First simulation results show that even though Ashby’s claims about homeostatic adaptivity need to be slightly weakened, his overall results are confirmed, thereby suggesting that an extension to virtual robots engaged in minimal cognitive tasks may be successful. Implications: The paper shows that a fuller incorporation of Ashby’s original results into recent cognitive science research may trigger a philosophical and technical reevaluation of the traditional distinction between heteronomous and autonomous behavior. Constructivist content: The research outlined in the paper supports an extended constructionist perspective in which agency as autonomy plays a more limited role.

Key words: Second-order cybernetics, autonomy and agency, general homeostasis thesis, W. R. Ashby, homeostat, concept simulation


Franchi S. (2013) Homeostats for the 21st century? Simulating ashby simulating the brain. Constructivist Foundations 9(1): 93–101. http://constructivist.info/9/1/093

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

Similar articles

Sweeting B. (2016) Design Research as a Variety of Second-Order Cybernetic Practice
Scott B. (2016) Cybernetic Foundations for Psychology
Müller K. H. & Riegler A. (2014) Second-Order Science: A Vast and Largely Unexplored Science Frontier
Gasparyan D. (2016) Consciousness as Self-Description in Differences
Scott B. & Bansal A. (2013) A Cybernetic Computational Model for Learning and Skill Acquisition


Abelson H. & DiSessa A. (1982) Turtle geometry. The computer as a medium for exploring mathematics. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Alexander F. (1948) Fundamental of psychoanalysis. W. W. Norton, New York. ▸︎ Google︎ Scholar
American Psychiatric Association (APA) (2000)Diagnostic and statistical manual of mental disorders (DSM-IV-TR). Fourth edition. American Psychiatric Association, Washington DC. ▸︎ Google︎ Scholar
An G. & Wilensky U. (2009) From artificial life to in silico medicine: NetLogo as a means to translational knowledge representation in biomedical research. In: Komosinski M. & Adamatzky A. (eds.) Artificial life models in software. Springer, Frankfurt: 183–214. ▸︎ Google︎ Scholar
Asaro P. (2011) Computers as models of the mind: on simulations, brains and the design of early computers. In: Franchi S. & Bianchini F. (eds.) The search for a theory of cognition: early mechanisms and new ideas. Rodopi, Amsterdam: 89–114. ▸︎ Google︎ Scholar
Ashby W. R. (1933) The physiological basis of neurosis. Proceedings of the Royal Society of Medicine 26(11): 1454–1460. ▸︎ Google︎ Scholar
Ashby W. R. (1947) The nervous system as a physical machine; with special reference to the origin of adaptive behavior. Mind 56: 44–59. ▸︎ Google︎ Scholar
Ashby W. R. (1951) Review of B. P. Babkin, Pavlov: A biography. The British Journal of Psychiatry 97(408): 596. ▸︎ Google︎ Scholar
Ashby W. R. (1952) Can a mechanical chess-player outplay its designer? The British Journal for the Philosophy of Science III(9): 44–57. ▸︎ Google︎ Scholar
Ashby W. R. (1952) Design for a brain. First edition. John Wiley & Sons, New York. ▸︎ Google︎ Scholar
Ashby W. R. (1953) Mechanical chess player. In: Foerster H. von, Mead M. & Teuber H. L. (eds.) Cybernetics. Circular causal and feedback mechanisms in biological and social systems. Transactions of the Ninth Macy Conference, March 20–21, 1952, Josiah Macy, Jr. Foundation, New York NY: 151–154. ▸︎ Google︎ Scholar
Ashby W. R. (1954) Design for a brain. First edition. Reprinted with corrections. John Wiley & Sons, New York. ▸︎ Google︎ Scholar
Ashby W. R. (1954) The application of cybernetics to psychiatry. The British Journal of Psychiatry 100(418): 114–124. ▸︎ Google︎ Scholar
Ashby W. R. (1956) Design for an intelligence amplifier. In: Shannon C. & McCarthy J. (eds.) Automata studies. Annals of Mathematics studies no. 34. Princeton University Press, Princeton NJ: 215–234. ▸︎ Google︎ Scholar
Ashby W. R. (1956) Introduction to cybernetics. Chapman & Hall, London. ▸︎ Google︎ Scholar
Ashby W. R. (1957) Pavlov reconditioned. Review of I. P. Pavlov, Experimental psychology and other essays. The British Journal for the Philosophy of Science 8(31): 249–252. ▸︎ Google︎ Scholar
Ashby W. R. (1960) Design for a brain. Second edition. John Wiley & Sons, New York. ▸︎ Google︎ Scholar
Ashby W. R. (1970) Connectance of large dynamic (cybernetic) systems: Critical values for stability. In: Conant R. (ed.) Mechanisms of intelligence: Ross Ashby’s writings on cybernetics. Intersystems Publications, Seaside CA: 89–91. Originally published in: Nature 228(5273): 784. ▸︎ Google︎ Scholar
Ashby W. R. (1971) Review of E. Maggio, Psychophysiology of lerning and memory. The British Journal of Psychiatry 119(552): 574. ▸︎ Google︎ Scholar
Avila-Garcìa O. & Cañamero L. (2005) Hormonal modulation of perception in motivation-based action selection architectures. In: Proceedings of the symposium “Agents that Want and Like: Motivational and Emotional Roots of Cognition and Action” at the AISB’05 Convention. University of Hertfordshire, Hatfield: 9–17. ▸︎ Google︎ Scholar
Barandiaran X. E. & Egbert M. D. (2013) Norm-establishing and norm-following in autonomous agency. Artificial Life 1–24. ▸︎ Google︎ Scholar
Barandiaran X. E. & Ruiz-Mirazo K. (2008) Modelling autonomy: Simulating the essence of life and cognition. Biosystems 91(2): 295–304. ▸︎ Google︎ Scholar
Braitenberg V. (1984) Vehicles. Experiments in synthetic psychology. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Brooks R. A. (1991) Intelligence without representation. Artificial Intelligence 47: 139–159. ▸︎ Google︎ Scholar
Clark A. (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36(3): 181–204. ▸︎ Google︎ Scholar
Di Paolo E. A. (2000) Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. In: Meyer J.-A., Berthoz A., Floreano D., Roitblat H. L. & Wilson S. W. (eds.) From animals to animats 6: Proceedings of the Sixth International Conference on the Simulation of Adaptive Behavior. MIT Press, Cambridge MA: 440–449. ▸︎ Google︎ Scholar
Di Paolo E. A. (2003) Organismically-inspired robotics: Homeostatic adaptation and natural teleology beyond the closed sensorimotor loop. In: Murase K. & Asakura T. (eds.) Dynamical systems approach to embodiment and sociality. Advanced Knowledge International, Adelaide: 19–42. ▸︎ Google︎ Scholar
Di Paolo E. A. (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences 4(4): 429–452. ▸︎ Google︎ Scholar
Di Paolo E. A. (2009) Extended life. Topoi 28(1): 9–21. ▸︎ Google︎ Scholar
Dreyfus H. L. (2007) Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Philosophical Psychology 20(2): 247–268. ▸︎ Google︎ Scholar
Egbert M. D. (2013) Bacterial chemotaxis: introverted or extroverted? A comparison of the advantages and disadvantages of basic forms of metabolism-based and metabolism-independent behavior using a computational model. PLoS ONE 8: e63617. ▸︎ Google︎ Scholar
Egbert M. D., Barandiaran X. E. & Di Paolo E. A. (2010) A minimal model of metabolism-based chemotaxis. PLoS Computational Biology 6(12): e1001004. ▸︎ Google︎ Scholar
Egbert M. D., Barandiaran X. E. & Di Paolo E. A. (2012) Behavioral metabolution: the adaptive and evolutionary potential of metabolism-based chemotaxis. Artificial Life, 18 (1): 1–25. ▸︎ Google︎ Scholar
Egbert M. D., Di Paolo E. A. & Barandiaran X. E. (2009) Chemo-ethology of an adaptive protocell: Sensorless sensitivity to implicit viability conditions. In: Advances in artificial life. Proceedings of the 10th European Conference on Artificial Life. Springer, Berlin: 242–250. ▸︎ Google︎ Scholar
Ellenberger H. (1970) The discovery of the unconscious. Basic Books, New York. ▸︎ Google︎ Scholar
Foerster H. von, Mead M. & Teuber H. L. (eds.) (1953) Cybernetics. Circular causal and feedback mechanisms in biological and social systems. Transactions of the Ninth Macy Conference, March 20–21, 1952, Josiah Macy, Jr. Foundation, New York NY ▸︎ Google︎ Scholar
Franchi S. (2005) Hunters, Cooks, and Nooks. Diacritics 33(2) 98–109. ▸︎ Google︎ Scholar
Franchi S. (2006) Herbert Simon, anti-philosopher. In: Magnani L. (ed.) Computing and philosophy. Associated International Academic Publishers, Pavia: 27–40. ▸︎ Google︎ Scholar
Franchi S. (2010) Can machines have an unconscious? Would they have to? In: Mainzer K. (ed.) Proceed­ings of the VIII European Conference on Philosophy and Computing (ECAP10) Verlag Dr. Hut, Munich: 506–513. ▸︎ Google︎ Scholar
Franchi S. (2011) Jammed machines and contingently fit animals: Psychoanalysis’s biological paradox. French Literature Series 38: 213–256. ▸︎ Google︎ Scholar
Franchi S. (2011) Life, death, and resurrection of W. Ross Ashby’s homeostat. In: Franchi S. & Bianchini F. (eds.) The search for a theory of cognition: Early mechanisms and new ideas. Rodopi, Amsterdam: 3–52. ▸︎ Google︎ Scholar
Freud S. (1964) Beyond the pleasure principle. In: The standard edition of the psy­chological works of Sigmund Freud. Volume XVIII. Hogarth Press, London. Original published in 1920. ▸︎ Google︎ Scholar
Freud S. (1964) Project for a scientific psychology. In: The standard edition of the psy­chological works of Sigmund Freud. Volume I. Hogarth Press, London: 283–387. ▸︎ Google︎ Scholar
Froese T. & Ikegami T. (2013) The brain is not an isolated “black box,” nor is its goal to become one. Behavioral and Brain Sciences 36(3): 213–214. ▸︎ Google︎ Scholar
Froese T. & Stewart J. (2010) Life after Ashby: Ultrastability and the autopoietic foundations of biological individuality. Cybernetics & Human Knowing 17(4): 83–106. ▸︎ Google︎ Scholar
Froese T. & Stewart J. (2013) Enactive cognitive science and biology of cognition: A response to Humberto Maturana. Cybernetics & Human Knowing 19(4): 61–74. ▸︎ Google︎ Scholar
Froese T. & Ziemke T. (2009) Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artificial Intelligence 173(3–4): 466–500. ▸︎ Google︎ Scholar
Froese T. (2009) Hume and the enactive approach to mind. Phenomenology and the Cognitive Sciences 8(1): 95–133. ▸︎ Google︎ Scholar
Froese T. (2010) From cybernetics to second-order cybernetics: A comparative analysis of their central ideas. Constructivist Foundations 5(2): 75–85. Available at http://www.univie.ac.at/constructivism/journal/5/2/075.froese ▸︎ Google︎ Scholar
Froese T. (2011) From second-order cybernetics to enactive cognitive science: Varela’s turn from epistemology to phenomenology. Systems Research and Behavioral Science 28: 631–645. ▸︎ Google︎ Scholar
Froese T., Virgo N. & Ikegami T. (in press). Motility at the origin of life: Its characterization and a model. Artificial Life. ▸︎ Google︎ Scholar
Froese T., Virgo N. & Izquierdo E. (2007) Autonomy: A review and a reappraisal. In: Almeida e Costa F., Rocha L. M., Costa E., Harvey I. & Coutinho A. (eds.) Advances in artificial life. Proceedings of the Ninth European Conference on Artificial Life. Springer, Berlin: 455–465. ▸︎ Google︎ Scholar
Gaussier P., Lepretre S., Quoy M., Revel A., Joulain C. & Banquet J. P. (2000) Experiments and models about cognitive map learning for motivated navigation. In: Demiris J. & Birk A. (eds.) Interdisciplinary approaches to robot learning. World Scientific, Singapore: 53–94. ▸︎ Google︎ Scholar
Gánti T. (2003) The principles of life. Oxford University Press, New York. ▸︎ Google︎ Scholar
Gomila A. & Müller V. C. (2012) Challenges for artificial cognitive systems. Journal of Cognitive Science 13(4): 453–69. ▸︎ Google︎ Scholar
Hanczyc M. M. & Ikegami T. (2010) Chemical basis for minimal cognition. Artificial Life 16(3): 233–243. ▸︎ Google︎ Scholar
Hanczyc M. M., Toyota T., Ikegami T., Packard N. & Sugawara T. (2007) Chemistry at the oil-water interface: Self-propelled oil droplets. Journal of the American Chemical Society 129(30): 9386–9391. ▸︎ Google︎ Scholar
Harvey I. (2008) Homeostasis via chaos: Implementing the uniselector as a dynamical system. In: Bullock S., Noble J., Watson R. A. & Bedau M. A. (eds.) Proceedings of the 11th International Conference on Artificial Life. MIT Press, Cambridge MA: 774. ▸︎ Google︎ Scholar
Harvey I. (2011) Opening stable doors: Complexity and stability in nonlinear systems. In: Lenaerts T., Giacobini M., Bersini H., Bourgine P., Dorigo M. & Doursat R. (eds.) Advances in artificial life, (ECAL 2011) MIT Press, Cambridge MA: 318–325. ▸︎ Google︎ Scholar
Harvey I., Husbands P., Cliff D., Thompson A. & Jakobi N. (1997) Evolutionary robotics: The Sussex approach. Robotics and Autonomous Systems 20: 205–224. ▸︎ Google︎ Scholar
Hull C. L. (1943) Principles of behavior. An introduction to behavior Theory. D. Appleton-Century, New York. ▸︎ Google︎ Scholar
Husbands P. & Holland O. (2008) The Ratio Club: A hub of British cybernetics. In: Husbands P., Hollands O. & Wheeler M. (eds.) The mechanical mind in history. MIT Press, Cambridge MA: 91–148. ▸︎ Google︎ Scholar
Husserl E. (2001) Analyses concerning passive and active synthesis. Lectures on transcendental logic. Translated by A. J. Steinbeck. Dordrecht: Kluwer. ▸︎ Google︎ Scholar
Iizuka H. & Di Paolo E. A. (2008) Extended homeostatic adaptation: Improving the link between internal and behavioural stability. In: Asada M., Hallam J. C. T., Meyer J.-A. & Tani J. (eds.) From animals to animats 10: Proceedings of the Tenth International Conference on Simulation of Adaptive Behavior (SAB 2008) Springer, Berlin: 1–11. ▸︎ Google︎ Scholar
Iizuka H., Ando H. & Maeda T. (2013) Extended homeostatic adaptation model with metabolic causation in plasticity mechanism – Toward constructing a dynamic neural network model for mental imagery. Adaptive Behavior 21(4): 263–273. ▸︎ Google︎ Scholar
Ikegami T. & Suzuki K. (2008) From a homeostatic to a homeodynamic self. Biosystems 91(2): 388–400. ▸︎ Google︎ Scholar
Ikegami T. (2007) Simulating active perception and mental imagery with embodied chaotic itinerancy. Journal of Consciousness Studies 14(7): 111–125. ▸︎ Google︎ Scholar
Ikegami T. (2013) A design for living technology: Experiments with the mind time machine. Artificial Life 19(3–4): 387–400. ▸︎ Google︎ Scholar
Jonas H. (1984) The imperative of responsibility. Foundations of an ethics for the technological age. Chicago University Press, Chicago IL. ▸︎ Google︎ Scholar
Jonas H. (2001) The phenomenon of life: Toward a philosophical biology. Northwestern University Press, Evanston IL. Originally published in 1966. ▸︎ Google︎ Scholar
Lacan J. (1988) The Ego in Freud’s theory and in the technique of psychoanalysis, 1954–1955. Seminar II. W. W. Norton, New York. ▸︎ Google︎ Scholar
Lacan J. (2001) Les complexes familiaux dans la formation de l”individu. In: Autres écrits. Autres écrits. Le Seuil, Paris: 23–84. Originally published in 1936. ▸︎ Google︎ Scholar
Lowe R. & Ziemke T. (2011) The feeling of action tendencies: On emotional regulation of goal-directed behaviour. Frontiers in Psychology 346(2): 1–24. ▸︎ Google︎ Scholar
Lowe R. & Ziemke T. (2013) The role of reinforcement in affective computation: Triggers, action and feeling. In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence for Creativity and Affective Computing (CICAC). Research Publishing, Singapore: 17–24. ▸︎ Google︎ Scholar
Lowe R., Montebelli A., Ieropoulos I., Greenman J., Melhuish C. & Ziemke T. (2010) Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics. In: Fellermann H., Dörr M., Hanczyc M., Laursen L., Maurer S., Merkle D., Monnard P.-A., Sty K., & Rasmussen S. (eds.) Artificial life XII. MIT Press: Cambridge MA: 725–732. ▸︎ Google︎ Scholar
Malabou C. (1996) L’avenir de Hegel: Plasticité, temporalité, dialectique. Vrin, Paris. ▸︎ Google︎ Scholar
Malabou C. (2012) The new wounded: From neurosis to brain damage. Fordham University Press, New York. ▸︎ Google︎ Scholar
Malmgren H. (2006) The essential connection between representation and learning. Philosophical Communications, Web Series 38. University of Gothenburg, Gothenburg. ▸︎ Google︎ Scholar
Manicka S. & Di Paolo E. A. (2009) Local ultrastability in a real system based on programmable springs. In: Kampis G., Karsai I. & Szathmary E. (eds.) Advances in artificial life. Proceedings of the Tenth European Conference on Artificial Life (ECAL09) Berlin: Springer: 87–94. ▸︎ Google︎ Scholar
Maturana H. R. & Varela F. J. (1980) Autopoiesis and cognition. The realization of the living. Reidel, Dordrecht. ▸︎ Google︎ Scholar
Maturana H. R. & Varela F. J. (1987) The tree of knowledge. The biological roots of human understanding. New Science Library, Boston. ▸︎ Google︎ Scholar
Maturana H. R. (2011) Ultrastability … autopoiesis? Reflexive response to Tom Froese and John Stewart. Cybernetics & Human Knowing 18(1–2): 143–152. ▸︎ Google︎ Scholar
McFarland D. & Bösser T. (1993) Intelligent behavior in animals and robots. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
McFarland D. & Spier E. (1997) Basic cycles, utility and opportunism in self-sufficient robots. Robotics and Autonomous Systems 20: 179–190. ▸︎ Google︎ Scholar
McFarland D. (2008) Guilty robots, happy dogs. Oxford University Press, New York. ▸︎ Google︎ Scholar
Melhuish C. R., Ieropoulos I., Greenman J. & Horsfield I. (2006) Energetically autonomous robots: Food for thought. Autonomous Robots 21: 187–198. ▸︎ Google︎ Scholar
Montebelli A., Lowe R., Ieropoulos I., Melhuish C. R., Greenman J. & Ziemke T. (2010) Microbial fuel cell driven behavioral dynamics in robot simulations. In: Fellermann H., Dörr M., Hanczyc M., Laursen L., Maurer S., Merkle D., Monnard P.-A., Sty K., & Rasmussen S. (eds.) Artificial life XII. MIT Press: Cambridge MA: 749–756. ▸︎ Google︎ Scholar
Muntean I. & Wright C. D. (2007) Autonomous agency, AI, and allostasis. Pragmatics and Cognition 15(3): 485–513. ▸︎ Google︎ Scholar
Nolfi S. & Floreano D. (2000) Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Pfeifer R. & Scheier C. (1999) Understanding intelligence. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Pickering A. (2010) The cybernetic brain: Sketches of another future. University of Chicago Press, Chicago IL. ▸︎ Google︎ Scholar
Pitonakova L. (2013) Ultrastable neuroendocrine robot controller. Adaptive Behavior 21(1): 47–63. ▸︎ Google︎ Scholar
Raichle M. E. & Snyder A. Z. (2007) A default mode of brain function: A brief history of an evolving idea. NeuroImage 37(4): 1083–1090. ▸︎ Google︎ Scholar
Riegler A. (2002) When is a cognitive system embodied? Cognitive Systems Research 3(3): 339–348. ▸︎ Google︎ Scholar
Ruiz-Mirazo K., Pereto J. & Moreno A. (2004) A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere: 323–346. ▸︎ Google︎ Scholar
Schrödinger E. (1944) What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge MA. ▸︎ Google︎ Scholar
Sterling P. (2004) Principles of allostasis: Optimal design, predictive regulation, pathophysiology and rational therapeutics. In: Schulkin J. (ed.) Allostasis, homeostasis, and the costs of adaptation. Cambridge University Press, Cambridge. ▸︎ Google︎ Scholar
Tertullian (1954) Opera. Edited by E. Dekkers J. G. P. Borleffs R. Willems R. F. Refoulé, G. F. Diercks & A. Kroynman, Volume 1. Opera catholica. Adversus Marcionem. Brepols, Turnhout. ▸︎ Google︎ Scholar
Thompson E. (2007) Mind in life: Biology, phenomenology, and the sciences of mind. Harvard University Press, Cambridge MA. ▸︎ Google︎ Scholar
Turing A. M. (1950) Computing machinery and intelligence. Mind 59: 433–460. ▸︎ Google︎ Scholar
Varela F. J. (1979) Principles of biological autonomy. Elsevier North Holland, New York. ▸︎ Google︎ Scholar
Villalobos M. (2013) Enactive cognitive science: revisionism or revolution? Adaptive Behavior 21(3): 159–167. ▸︎ Google︎ Scholar
Walker N. (1956) Freud and homeostasis. British Journal for the Philosophy of Science 7: 61–72. ▸︎ Google︎ Scholar
Walter W. G. (1961) The living brain. Penguin Books, Harmondsworth. ▸︎ Google︎ Scholar
Weber A. & Varela F. J. (2002) Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences 1(2): 97–125. ▸︎ Google︎ Scholar
Wiener N. & Schadé J. P. (1963) Introduction to neurocybernetics. Progress in Brain Research 2: 1–7. ▸︎ Google︎ Scholar
Wiener N. (1948) Cybernetics. First edition. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Wiener N. (1976) Collected works with commentaries. Volume IV. Edited by P. Masani. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Ziemke T. & Lowe R. (2009) On the role of emotion in embodied cognitive architectures: From organisms to robots. Cognitive Computation 1: 104–117. ▸︎ Google︎ Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.