Eigenforms, Interfaces and Holographic Encoding: Toward an Evolutionary Account of Objects and Spacetime
Chris Fields, Donald D. Hoffman, Chetan Prakash & Robert Prentner
Log in to download the full text for free
> Citation
> Similar
> References
> Add Comment
Abstract
Context: The evolution of perceptual systems and hence of observers remains largely disconnected from the question of the emergence of classical objects and spacetime. This disconnection between the biosciences and physics impedes progress toward understanding the role of the “observer” in physical theory. Problem: In this article we consider the problem of how to understand objects and spacetime in observer-relative evolutionary terms. Method: We rely on a comparative analysis using multiple formal frameworks. Results: The eigenform construct of von Foerster is compared to other formal representations of observer-environment interactions. Eigenforms are shown to be encoded on observer-environment interfaces and to encode fitness consequences of actions. Space and time are components of observational outcomes in this framework; it is suggested that spacetime constitutes an error-correcting code for fitness consequences. Implications: Our results contribute to an understanding of the world in which neither objects nor spacetime are observer-independent. Constructivist content: The eigenform concept of von Foerster is linked to the concepts of decoherence and holographic encoding from physics and the concept of fitness from evolutionary biology.
Key words: Active inference, boundary, conscious agent, icon, Markov blanket, redundancy.
Citation
Fields C., Hoffman D. D., Prakash C. & Prentner R. (2017) Eigenforms, interfaces and holographic encoding: Toward an evolutionary account of objects and spacetime. Constructivist Foundations 12(3): 265–274. http://constructivist.info/12/3/265
Export article citation data:
Plain Text ·
BibTex ·
EndNote ·
Reference Manager (RIS)
Similar articles
References
Adams R. A., Friston K. J. & Bastos A. M. (2015) Active inference, predictive coding and cortical architecture. In: Casanova M. F. & Opris I. (eds.) Recent advances in the modular organization of the cortex. Springer, Berlin: 97–121.
▸︎ Google︎ Scholar
Arkani-Hamed N. & Trnka J. (2014) The amplituhedron. Journal of High Energy Physics 2014: 30.
▸︎ Google︎ Scholar
Baillargeon R. (2008) Innate ideas revisited: For a principle of persistence in infants’ physical reasoning. Perspectives on Psychological Science 3(1): 2–13.
▸︎ Google︎ Scholar
Bargh J. A. & Chartrand T. L. (1999) The unbearable automaticity of being. American Psychologist 54(7): 462–479.
▸︎ Google︎ Scholar
Bekenstein J. D. (1973) Black holes and entropy. Physical Review D 7(8): 2333–2346.
▸︎ Google︎ Scholar
Bennett C. H. (2003) Notes on Landauer’s Principle, reversible computation, and Maxwell’s Demon. Studies in the History and Philosophy of Modern Physics 34(3): 501–510.
▸︎ Google︎ Scholar
Bilson-Thompson S. O., Markopoulou F. & Smolin L. (2007) Quantum gravity and the standard model. Classical and Quantum Gravity 24(16): 3975–3993.
▸︎ Google︎ Scholar
Bousso R. (2002) The holographic principle. Reviews of Modern Physics 74(3): 825–874.
▸︎ Google︎ Scholar
Coleman S. R., Preskill J. & Wilczek F. (1992) Quantum hair on black holes. Nuclear Physics B 378(1–2): 175–246.
▸︎ Google︎ Scholar
Conway J. & Kochen S. (2006) The free will theorem. Foundations of Physics 36(10): 1441–1473.
▸︎ Google︎ Scholar
Cook N. D. (2008) The neuron-level phenomena underlying cognition and consciousness: Synaptic activity and the action potential. Neuroscience 153(3): 556–570.
▸︎ Google︎ Scholar
Csibra G. & Gergely G. (2012) Teleological understanding of actions. In: Banaji M. R. & Gelman S. A. (eds.) Navigating the social world: What infants, children and other species can teach us. Oxford University Press, Oxford: 38–43.
▸︎ Google︎ Scholar
Dugíc M. & Jekníc-Dugíc J. (2008) What is “system”: The information-theoretic arguments. International Journal of Theoretical Physics 47(3): 805–813.
▸︎ Google︎ Scholar
D’Ariano G. M. & Perinotti P. (2017) Quantum cellular automata and free quantum field theory. Frontiers in Physics 12: 120301.
▸︎ Google︎ Scholar
Eibenberger S., Gerlich S., Arndt M., Mayor M. & Txen J. (2013) Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. Physical Chemistry and Chemical Physics 15: 14696–14700.
▸︎ Google︎ Scholar
Fields C. (2012) A model-theoretic interpretation of environment-induced superselection. International Journal of General Systems 41(8): 847–859.
▸︎ Google︎ Scholar
Fields C. (2013) A whole box of Pandoras: Systems, boundaries and free will in quantum theory. Journal of Experimental and Theoretical Artificial Intelligence 25(3): 291–302.
▸︎ Google︎ Scholar
Fields C. (2016) Building the observer into the system: Toward a realistic description of human interaction with the world. Systems 4: 32.
▸︎ Google︎ Scholar
Fields C. (2016) Decompositional equivalence: A fundamental symmetry underlying quantum theory. Axiomathes 26(3): 279–311.
▸︎ Google︎ Scholar
Foerster H. von (1960) On self-organizing systems and their environments. In: Yovits M. C. & Cameron S. (eds.) Self-organizing systems. Pergamon, London: 31–50. Reprinted in: Foerster (2003: 1–19
http://cepa.info/1593
Foerster H. von (1970) Thoughts and notes on cognition. In: Gavin P. (ed.) Cognition: A multiple view. Spartan, New York: 25–48. Reprinted in: Foerster (2003: 169–189
http://cepa.info/1637
Foerster H. von (1973) On constructing a reality. In: Preiser F. E. (ed.) Environmental design research. Volume II. Dowden, Hutchinson & Ross, Stroudsburg PA: 35–46. Reprinted in: Foerster (2003: 211–227
http://cepa.info/1278
Foerster H. von (1976) Objects: Tokens for (eigen-) behaviors. ASC Cybernetics Forum 8(3–4): 91–96. Reprinted in Foerster H. von (2003) Understanding understanding. Springer, New York: 261–271
http://cepa.info/1270
Foerster H. von (1979) Cybernetics of cybernetics. In: Krippendorf K. (ed.) Communication and control. Gordon & Breach, New York: 5–8. Reprinted in: Foerster (2003: 283–286
http://cepa.info/1707
Foerster H. von (1981) Notes on an epistemology for living things. In: Foerster H. von, Observing Systems. Intersystems Publications, Seaside CA: 258–271.
▸︎ Google︎ Scholar
Fuchs C. A. & Stacey B. C. (2016) Some negative remarks on operational approaches to quantum theory. In: Chiribella G. & Spekkens R. W. (eds.) Quantum theory: Informational foundations and foils. Springer, Berlin: 283–305.
▸︎ Google︎ Scholar
Geisler W. S. & Diehl R. L. (2003) A Bayesian approach to the evolution of perceptual and cognitive systems. Cognitive Science 27(3): 379–402.
▸︎ Google︎ Scholar
Ghirardi G. C., Rimini A. & Weber T. (1986) Unified dynamics for microscopic and macroscopic systems. Physical Review D 34(2): 470–491.
▸︎ Google︎ Scholar
Glasersfeld E. von (1981) The concepts of adaptation and viability in a constructivist theory of knowledge. In: Sigel I. E., Brodzinsky D. M. & Golinkoff R. M. (eds.) New directions in Piagetian theory and practice. Erlbaum, Hillsdale NJ: 87–95
http://cepa.info/1357
Goodale M. A. & Milner A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15(1): 20–25.
▸︎ Google︎ Scholar
Harshman N. L. & Ranade K. S. (2011) Observables can be tailored to change the entanglement of any pure state. Physical Review A 84(1): 012303.
▸︎ Google︎ Scholar
Hawking S. W. (2015) The information paradox for black holes. arXiv: 1509.01147.
▸︎ Google︎ Scholar
Hawking S. W., Perry M. J. & Strominger A. (2016) Soft hair on black holes. Physical Review Letters 116(23): 231301.
▸︎ Google︎ Scholar
Hensen B., Bernien H., Dréau A. E., Reiserer A., Kalb N., Blok M. S., Ruitenberg J., Vermeulen R. F. L., Schouten R. N., Abellán C. & Amaya W. (2015) Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526: 682–686.
▸︎ Google︎ Scholar
Hickok G. & Poeppel D. (2007) The cortical organization of speech processing. Nature Reviews Neuroscience 8: 393–402.
▸︎ Google︎ Scholar
Husserl E. (1982) Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. First book: General introduction to a pure phenomenology. Translated by Fred Kersten. Nijhoff, The Hague. German original published in 1913.
▸︎ Google︎ Scholar
Husserl E. (2012) Ideas: General introduction to pure phenomenology. Routledge, London. German original published in 1913.
▸︎ Google︎ Scholar
James W. (1892) Psychology. University of Notre Dame Press, Notre Dame IN. Reprinted 2001 by Dover Press, Mineola NY.
▸︎ Google︎ Scholar
Kordeš U. (2016) Where is consciousness? Constructivist Foundations 11(3): 552–554. http://constructivist.info/11/3/552
Landauer R. (1961) Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3): 183–195.
▸︎ Google︎ Scholar
Landauer R. (1999) Information is a physical entity. Physica A 263(1–4): 63–67.
▸︎ Google︎ Scholar
Landsman N. P. (2007) Between classical and quantum. In: Butterfield J. & Earman J. (eds.) Handbook of the philosophy of science: Philosophy of physics. Elsevier, Amsterdam: 417–553.
▸︎ Google︎ Scholar
Levin M. A. & Wen X.-G. (2005) String-net condensation: A physical mechanism for topological phases. Physical Review B 71(4): 045110.
▸︎ Google︎ Scholar
Libet B., Gleason C. A., Wright E. W. & Pearl D. K. (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness–potential) Brain 106(3): 623–642.
▸︎ Google︎ Scholar
Luo Y. & Baillargeon R. (2010) Toward a mentalistic account of early psychological reasoning. Current Directions in Psychological Science 19(5): 301–307.
▸︎ Google︎ Scholar
Mandelbrot B. (1982) The fractal geometry of nature. Freeman, San Francisco.
▸︎ Google︎ Scholar
Manning A. G., Khakimov R. I., Dall R. G. & Truscott A. G. (2015) Wheelers’ delayed-choice gedanken experiment with a single atom. Nature Physics 11: 539–542.
▸︎ Google︎ Scholar
Misner C., Thorne K. & Wheeler J. A. (1973) Gravitation. W. H. Freeman, San Francisco.
▸︎ Google︎ Scholar
Moore E. F. (1956) Gedankenexperiments on sequential machines. In: Shannon C. W. & McCarthy J. (eds.) Automata studies. Princeton University Press, Princeton NJ: 129–155.
▸︎ Google︎ Scholar
Neumann J. von (1955) Mathematical foundations of quantum mechanics. Princeton University Press: Princeton NJ. German original published in 1935.
▸︎ Google︎ Scholar
Ollivier H., Poulin D. & Zurek W. H. (2004) Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters 93: 220401.
▸︎ Google︎ Scholar
Ollivier H., Poulin D. & Zurek W. H. (2005) Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A 72: 042113.
▸︎ Google︎ Scholar
Palmer S. E. (1999) Vision science: Photons to phenomenology. MIT Press, Cambridge MA.
▸︎ Google︎ Scholar
Pastawski F., Yoshida B., Harlow D. & Preskill J. (2015) Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. Journal of High Energy Physics 2015: 149.
▸︎ Google︎ Scholar
Pearl J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Mateo CA.
▸︎ Google︎ Scholar
Penrose R. (1996) On gravity’s role in quantum state reduction. General Relativity and Gravitation 28(5): 581–600.
▸︎ Google︎ Scholar
Pizlo Z., Li Y., Sawada T. & Steinman R. M. (2014) Making a machine that sees like us. Oxford University Press, New York.
▸︎ Google︎ Scholar
Quine W. V. O. (1970) On the reasons for the indeterminacy of translation. Journal of Philosophy 67(6): 178–183.
▸︎ Google︎ Scholar
Roederer J. (2005) Information and its role in nature. Springer, Berlin.
▸︎ Google︎ Scholar
Rovelli C. (2004) Quantum gravity. Cambridge University Press, Cambridge.
▸︎ Google︎ Scholar
Rubino G., Rozema L. A., Feix A., Araújo M., Zeuner J. M., Procopio L. M., Brukner Č. & Walther P. (2017) Experimental verification of an indefinite causal order. Science Advances 3(3): E1602589.
▸︎ Google︎ Scholar
Saini A. & Stojkovic D. (2015) Radiation from a collapsing object is manifestly unitary. Physical Review Letters 114: 111301.
▸︎ Google︎ Scholar
Schlosshauer M. (2006) Experimental motivation and empirical consistency of minimal no-collapse quantum mechanics. Annals of Physics 321(1): 112–149.
▸︎ Google︎ Scholar
Schlosshauer M. (2007) Decoherence and the quantum to classical transition. Springer, Berlin.
▸︎ Google︎ Scholar
Smith B. (1996) Mereotopology: A theory of parts and boundaries. Data and Knowledge Engineering 20(3): 287–303.
▸︎ Google︎ Scholar
Smith J. E. & Nair R. (2005) The architecture of virtual machines. IEEE Computer 38(5): 32–38.
▸︎ Google︎ Scholar
Spelke E. S. (1994) Initial knowledge: Six suggestions. Cognition 50(1–3): 431–445.
▸︎ Google︎ Scholar
Strominger A. (2017) Black hole information revisited. Preprint arxiv: 1706.07143v1 (hep-th)
▸︎ Google︎ Scholar
Susskind L. (1995) The world as a hologram. Journal of Mathematical Physics 36: 6377–6396.
▸︎ Google︎ Scholar
Susskind L. (2016) Computational complexity and black hole horizons. Fortschritte Physik 64(1): 24–43.
▸︎ Google︎ Scholar
Swingle B. (2012) Entanglement renormalization and holography. Physical Review D 86: 065007.
▸︎ Google︎ Scholar
Tarski A. (1944) The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research 4(3): 341–376.
▸︎ Google︎ Scholar
Tegmark M. (2012) How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem. Physical Review D 85: 123517.
▸︎ Google︎ Scholar
Thompson D’A. W. (1945) On growth and form. Cambridge University Press, Cambridge. Originally published in 1917.
▸︎ Google︎ Scholar
Wallace D. (2008) Philosophy of quantum mechanics. In: Rickles D. (ed.) The Ashgate companion to contemporary philosophy of physics. Ashgate, Aldershot: 16–98.
▸︎ Google︎ Scholar
Weinberg S. (2012) Collapse of the state vector. Physical Review A 85: 062116.
▸︎ Google︎ Scholar
Wheeler J. A. (1990) Information, physics, quantum: The search for links. In: Zurek W. (ed.) Complexity, entropy and the physics of information. Westview, Boulder CO: 3–28.
▸︎ Google︎ Scholar
Wigner E. P. (1962) Remarks on the mind-body question. In: Good I. J. (ed.) The Scientist Speculates. Basic Books, New York: 284–302.
▸︎ Google︎ Scholar
Zanardi P. (2001) Virtual quantum subsystems. Physical Review Letters 87(7): 077901.
▸︎ Google︎ Scholar
Zeh D. (1970) On the interpretation of measurement in quantum theory. Foundations of Physics 1(1): 69–76.
▸︎ Google︎ Scholar
Zeh D. (1973) Toward a quantum theory of observation. Foundations of Physics 3(1): 109–116.
▸︎ Google︎ Scholar
Zurek W. H. (2003) Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 75(3): 715–775.
▸︎ Google︎ Scholar
’t Hooft G. (1993) Dimensional reduction in quantum gravity. In: Ali A., Ellis J. & Randjbar-Daemi S. (eds.) Salamfestschrift. World Scientific, Singapore: 284–296.
▸︎ Google︎ Scholar
Comments: 0
To stay informed about comments to this publication and post comments yourself, please log in first.