Volume 16 · Number 1 · Pages 036–049
Foresight Rather than Hindsight? Future State Maximization As a Computational Interpretation of Heinz von Foerster’s Ethical Imperative

Hannes Hornischer, Simon Plakolb, Georg Jäger & Manfred Füllsack

Log in download the full text in PDF

> Citation > Similar > References > Add Comment


Context: Many AI and machine-learning techniques are primarily focused on past-to-future extrapolations of statistical regularities in large amounts of data. We introduce a method that builds on an in-action sampling of probes from possible futures with preference for those that prove promising for maximizing the perceivable space of possibilities. This foresight-oriented (rather than hindsight-oriented) method is particularly promising for handling non-linear or abruptly emerging developments. Problem: What von Foerster called the Ethical Imperative seems less strictly derived from physical principles than other well-known concepts in his work. Regarding investigations in recent AI research, however, it appears that the Ethical Imperative corresponds almost literally to the so-called principle of Future State Maximization, a principle that lately has been applied successfully to a range of coordination and learning tasks. Method: We discuss the principle of Future State Maximization, as previewed by von Foerster, against a background of a general need for tackling uncertain futures by way of modeling, and introduce three computational investigations on different coordination tasks based on Future State Maximization. Results: We show that the principle of Future State Maximization corresponds to von Foerster’s Ethical Imperative and to constructivist principles, and that it lends itself to opening up interesting new horizons for AI research. Implications: The article suggests an interpretation of how von Foerster’s Ethical Imperative can be understood as a foresight- rather than hindsight-oriented method against a background of computer-based modeling and AI research. Furthermore, it shows that computer-based methods conform well with the epistemology of constructivism.

Key words: Agent-based modeling, coordination and learning tasks, Ethical Imperative, Future State Maximization, Heinz von Foerster

Handling Editor: Alexander Riegler


Hornischer H., Plakolb S., Jäger G. & Füllsack M. (2020) Foresight rather than hindsight? Future state maximization as a computational interpretation of Heinz von Foerster’s ethical imperative. Constructivist Foundations 16(1): 036–049. https://constructivist.info/16/1/036

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

Similar articles

Hornischer H., Plakolb S., Jäger G. & Füllsack M. (2020) Authors’ Response: FSX Models and Their Building Blocks
Füllsack M. & Riegler A. (2017) Thinking in Eigenbehaviors as a Transdisciplinary Approach
Umpleby S. A. (2016) Second-Order Cybernetics as a Fundamental Revolution in Science
Kenny V. (2010) Exile on Mainstream. Constructivism in Psychotherapy and Suggestions from a Kellian Perspective
Foerster H. von & Müller A. (2008) Computing a Reality: Heinz von Foerster’s Lecture at the A.U.M Conference in 1973


Ay N. & Polani D. (2008) Information flows in causal networks. Advances in Complex Systems 11(1): 17–41. ▸︎ Google︎ Scholar
Bongard J., Zykov V. & Lipson H. (2006) Resilient machines through continuous self-modeling. Science 314(5802): 1118–1121. ▸︎ Google︎ Scholar
Boos M., Pritz J., Lange S. & Belz M. (2014) Leadership in moving human groups. PLOS Computational Biology 10.4: e1003541. ▸︎ Google︎ Scholar
Bousso R., Harnik R., Kribs G. D. & Perez G. (2007) Predicting the cosmological constant from the causal entropic principle. Physical Review D 76(4): 043513. ▸︎ Google︎ Scholar
Cerezo S. H. & Ballester G. D. (2018) Fractal AI: A fragile theory of intelligence. ArXiv:1803.05049 [Cs], March. http://arxiv.org/abs/1803.05049.
Cerezo S. H., Ballester G. D. & Baxevanakis S. (2018) Solving Atari Games using fractals and entropy. ArXiv:1807.01081 [Cs], July. http://arxiv.org/abs/1807.01081
Charlesworth H. J. & Turner M. S. (2019) Intrinsically motivated collective motion. Proceedings of the National Academy of Sciences 116(31): 15362–15367. https://www.pnas.org/content/pnas/116/31/15362.full.pdf
Chin G. J. (2007) Cognitive homeostasis. Science 318(5851): 717. ▸︎ Google︎ Scholar
Donati E., van Vuuren G. J., Tanaka K., Romano D., Schmickl T. & Stefanini C. (2017) aMussels: Diving and anchoring in a new bio-inspired under-actuated robot class for long-term environmental exploration and monitoring. In: Gao Y., Fallah S., Jin Y. & Lekakou C. (eds.) Towards autonomous robotic systems. Springer, Cham: 300–314. ▸︎ Google︎ Scholar
Foerster H. von & Bröcker M. (2002) Teil der Welt: Fraktale einer Ethik – Ein Drama in drei Akten. Carl-Auer-Systeme Verlag, Heidelberg. ▸︎ Google︎ Scholar
Foerster H. von (1972) Perception of the future and the future of perception. Instructional Science 1(1): 31–43. https://cepa.info/1647
Foerster H. von (1981) Objects: Tokens for (eigen-)behaviors. In: Observing systems. Intersystems Publications, Seaside CA: 274–285. Originally published in 1976. https://cepa.info/1270
Foerster H. von (2003) On constructing a reality. In: Understanding understanding. Springer, New York: 211–227. Originally published in 1973. https://cepa.info/1278
Foerster H. von, Mora P. M. & Amiot L. W. (1960) Doomsday: Friday, November 13, AD 2026. Science 132(29): 1291–1295. https://cepa.info/1596
Füllsack M. (2013) Constructivism and computation: Can computer-based modeling add to the case for constructivism? Constructivist Foundations 9(1): 7–16. https://constructivist.info/9/1/007
Füllsack M. (2018) Plasticity, granularity and multiple contingency: Essentials for conceiving an artificial constructivist agent. Constructivist Foundations 13(2): 282–291. https://constructivist.info/12/2/282
Guckelsberger C., Salge C. & Togelius J. (2018) New and surprising ways to be mean: Adversarial NPCs with coupled empowerment minimisation. arXiv:1806.01387 [cs.AI]. http://arxiv.org/abs/1806.01387.
Hornischer H. (2015) Causal entropic forces: Intelligent behaviour, dynamics and pattern formation. Master’s Thesis, Georg-August-Universität Göttingen, Germany. ▸︎ Google︎ Scholar
Hornischer H., Varughese J. C., Thenius R., Wotawa F., Füllsack M. & Schmickl T. (2020) CIMAX: Collective information maximization in robotic swarms using local communication. Adaptive Behavior, 1059712320912021. ▸︎ Google︎ Scholar
Klyubin A., Polani D. & Nehaniv C. L. (2005) Empowerment: A universal agent-centric measure of control. In: 2005 IEEE Congress on Evolutionary Computation. Volume 1. IEEE Press, Piscataway NJ: 128–135. ▸︎ Google︎ Scholar
Martyushev L. M. & Seleznev V. D. (2006) Maximum entropy production principle in physics, chemistry and biology. Physics Reports 426(1): 1–45. ▸︎ Google︎ Scholar
Maturana H. R. & Varela F. J. (1987) The tree of knowledge: The biological roots of human understanding. Shambhala, Boston. ▸︎ Google︎ Scholar
Metzinger T. (2007) Empirical perspectives from the self-model theory of subjectivity: A brief summary with examples. In: Banerjee R. & Chakrabarti B. K. (eds.) Models of brain and mind: Physical, computational and psychological approaches. Elsevier, Amsterdam: 215–278. ▸︎ Google︎ Scholar
Piaget J. (1960) Child’s conception of geometry. Basic Books, New York. ▸︎ Google︎ Scholar
Riegler A. (2007) Is Glasersfeld’s constructivism a dangerous intellectual tendency? In: Glanville R. & Riegler A. (eds.) The importance of being Ernst. Echoraum, Vienna: 263–275. https://cepa.info/1776
Rosen R., Rosen J., Kineman J. J. & Nadin M. (2012) Anticipatory systems: Philosophical, mathematical, and methodological foundations. Second edition. Springer, New York. Shannon C. E. (1948) A mathematical theory of communication. The Bell System Technical Journal 27(3): 379–423. ▸︎ Google︎ Scholar
Wissner-Gross A. D. & Freer C. E. (2013) Causal entropic forces. Physical Review Letters 110(16): 168702. ▸︎ Google︎ Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.