Info-computational Constructivism and Cognition
Gordana Dodig-Crnkovic
Log in to download the full text for free
> Citation
> Similar
> References
> Add Comment
Abstract
Context: At present, we lack a common understanding of both the process of cognition in living organisms and the construction of knowledge in embodied, embedded cognizing agents in general, including future artifactual cognitive agents under development, such as cognitive robots and softbots. Purpose: This paper aims to show how the info-computational approach (IC) can reinforce constructivist ideas about the nature of cognition and knowledge and, conversely, how constructivist insights (such as that the process of cognition is the process of life) can inspire new models of computing. Method: The info-computational constructive framework is presented for the modeling of cognitive processes in cognizing agents. Parallels are drawn with other constructivist approaches to cognition and knowledge generation. We describe how cognition as a process of life itself functions based on info-computation and how the process of knowledge generation proceeds through interactions with the environment and among agents. Results: Cognition and knowledge generation in a cognizing agent is understood as interaction with the world (potential information), which by processes of natural computation becomes actual information. That actual information after integration becomes knowledge for the agent. Heinz von Foerster is identified as a precursor of natural computing, in particular bio computing. Implications: IC provides a framework for unified study of cognition in living organisms (from the simplest ones, such as bacteria, to the most complex ones) as well as in artifactual cognitive systems. Constructivist content: It supports the constructivist view that knowledge is actively constructed by cognizing agents and shared in a process of social cognition. IC argues that this process can be modeled as info-computation.
Key words: Constructivism, info-computationalism, computing nature, morphological computing, self-organization, autopoiesis
Citation
Dodig-Crnkovic G. (2014) Info-computational constructivism and cognition. Constructivist Foundations 9(2): 223–231. http://constructivist.info/9/2/223
Export article citation data:
Plain Text ·
BibTex ·
EndNote ·
Reference Manager (RIS)
Similar articles
References
Abraham D. & Shaw R. (1999) A visual introduction to dynamical systems theory for psychology. Aerial Press, Santa Cruz.
▸︎ Google︎ Scholar
Asaro P. M. (2007) Heinz von Foerster and the bio-computing movements of the 1960s. In: Müller K. H. & Müller A. (ed.) An unfinished revolution? Heinz von Foerster and the Biological Computer Laboratory | BCL 1958–1976. Echoraum, Vienna: 253–276.
▸︎ Google︎ Scholar
Baeyer H. von (2013) Quantum weirdness. It’s all in your mind. Scientific American 308(6): 46–51.
▸︎ Google︎ Scholar
Baeyer H.von (2013) Can quantum bayesianism fix the paradoxes of quantum mechanics? Scientific American 308(6): 47–51.
▸︎ Google︎ Scholar
Bar-Yam Y. (2004) A mathematical theory of strong emergence using multiscale variety. Complexity 9(6): 15–24.
▸︎ Google︎ Scholar
Bar-Yam Y. (2004) Multiscale variety in complex systems. Complexity 9(4): 37–45.
▸︎ Google︎ Scholar
Basti G. (2014) The formal ontology of the natural realism. Sociedade Brasileira de Historia de Matematica, Campinas. In press.
▸︎ Google︎ Scholar
Ben-Jacob E., Shapira Y. & Tauber A. I. (2006) Seeking the foundations of cognition in bacteria. Physica A 359: 495–524.
▸︎ Google︎ Scholar
Blasone M., Jizba P. & Vitiello G. (2011) Quantum field theory and its macroscopic manifestations. Boson condensation, ordered patterns and topological defects. Imperial College Press, London.
▸︎ Google︎ Scholar
Bonsignorio F. (2013) Quantifying the evolutionary self-structuring of embodied cognitive networks. artificial Life 19(2): 267–289.
▸︎ Google︎ Scholar
Boto L. (2010) Horizontal gene transfer in evolution: Facts and challenges. Proceedings of the Royal Society of London B: Biological Sciences 277: 819–827.
▸︎ Google︎ Scholar
Brier S. (1996) From second-order cybernetics to cybersemiotics: A semiotic re-entry into the second-order cybernetics of Heinz von Foerster. Systems Research 13(3): 229–244.
▸︎ Google︎ Scholar
Brier S. (2008) Cybersemiotics: Why information is not enough! Toronto studies in semiotics and communication. University of Toronto Press, Toronto. Reprinted with minor corrections in 2010 and 2013.
▸︎ Google︎ Scholar
Brier S. (2011) Cybersemiotics and the question of knowledge. In: Dodig-Crnkovic G. & Burgin M. (eds.) Information and computation. World Scientific, Singapore: 1–34.
▸︎ Google︎ Scholar
Brier S. (2011) Ethology and the Sebeokian way from zoosemiotics to cyber(bio)semiotics. In: Deely J., Kull K. & Petrilli S. (eds.) Semiotics continues to astonish: The intellectual heritage of Thomas Albert Sebeok. Mouton de Gruyter, Paris: 41–84.
▸︎ Google︎ Scholar
Brier S. (2013) Cybersemiotics: A new foundation for transdisciplinary theory of consciousness, cognition, meaning and communication. In: Swan L. (ed.) Origins of mind. Springer, Berlin: 97–126
▸︎ Google︎ Scholar
Brier S. (2013) Cybersemiotics: A new foundation for transdisciplinary theory of information, cognition, meaningful communication and the interaction between nature and culture. Integral Review 9(2): 220–262.
▸︎ Google︎ Scholar
Brier S. (2013) Transdisciplinary view of Information theory seen from a Cybersemiotics point of view. In: Ibekwe-SanJuan F. & Dousa T. (eds.) Fundamental notions of information, communication and knowledge: Its effect on scientific research and inter-disciplinarity. Springer, New York: 23–49.
▸︎ Google︎ Scholar
Burgin M. (2010) Theory of information: Fundamentality, diversity and unification. World Scientific, Singapore.
▸︎ Google︎ Scholar
Butler D. & Gash H. (2003) Creative learning and spiritual moments. In: Lasker G. E. (ed.) Advances in sociocybernetics and human development. Volume XI. International Institute for Advanced Studies, Windsor: 41–46.
▸︎ Google︎ Scholar
Bynum T. & Moor J. (2000) The digital phoenix: How computers are changing philosophy. Revised Edition. Blackwell, Oxford.
▸︎ Google︎ Scholar
Caves C. M., Fuchs C. A. & Schack R. (2002) Quantum probabilities as Bayesian probabilities. Physical Review A 65(2): 1–6.
▸︎ Google︎ Scholar
Chiribella G., D’Ariano G. M. & Perinotti P. (2012) Quantum theory, namely the pure and reversible theory of information. Entropy 14: 1877–1893.
▸︎ Google︎ Scholar
Cilliers P. (2002) Complexity and postmodernism: Understanding complex systems. Routledge, London. Originally published in 1998.
▸︎ Google︎ Scholar
Clark A. (1989) Microcognition: Philosophy, cognitive science, and parallel distributed processing. MIT Press, Cambridge MA.
▸︎ Google︎ Scholar
Crutchfield J. P., Ditto W. L. & Sinha S. (2010) Introduction to focus issue: Intrinsic and designed computation: information processing in dynamical systems-beyond the digital hegemony. Chaos 20(3): 037101.
▸︎ Google︎ Scholar
Csermely P. (2009) Weak links. The universal key to the stability of networks. Springer, New York.
▸︎ Google︎ Scholar
Davies P. C. W. (2010) Universe from bit. In: Davies P. C. W. & Gregersen N. H. (eds.) Information and the nature of reality. From physics to metaphysics. Cambridge University Press, Cambridge: 65–91.
▸︎ Google︎ Scholar
Dodig-Crnkovic G. & Müller V. (2011) A dialogue concerning two world systems: Info-computational vs. mechanistic. In: Dodig Crnkovic G. & Burgin M. (eds.) Information and computation. World Scientific, Singapore: 149–184.
▸︎ Google︎ Scholar
Dodig-Crnkovic G. (2010) Biological information and natural computation. In: Vallverdú J. (ed.) Thinking machines and the philosophy of computer science: Concepts and principles. IGI Global, Hershey PA: 36–52.
▸︎ Google︎ Scholar
Dodig-Crnkovic G. (2010) Constructivist research and info-computational knowledge generation. In: Magnani L., Carnielli W. & Pizzi C. (eds.) Model-based reasoning in science and technology. Abduction, logic, and computational discovery. Springer, Heidelberg/Berlin: 359–380.
▸︎ Google︎ Scholar
Dodig-Crnkovic G. (2010) The cybersemiotics and info-computationalist research programmes as platforms for knowledge production in organisms and machines. Entropy 12(4): 878–901.
▸︎ Google︎ Scholar
Dodig-Crnkovic G. (2014) Information, computation, cognition. Agency-based hierarchies of levels. In: Müller V. C. (ed.) Fundamental issues of artificial intelligence. Springer, Berlin. In press.
▸︎ Google︎ Scholar
Edelman G. M. & Gally J. A. (2001) Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences USA 98: 13763–13768.
▸︎ Google︎ Scholar
Eilenberg S. & MacLane S. (1945) General theory of natural equivalences. Transactions of the American Mathematical Society 58(2): 231–294.
▸︎ Google︎ Scholar
Floridi L. (2003) Informational realism. In: Weckert J. & Al-Saggaf Y. (eds.) Selected papers from conference on Computers and Philosophy (CRPIT ’03) Australian Computer Society, Darlinghurst: 7–12.
▸︎ Google︎ Scholar
Floridi L. (2008) Trends in the philosophy of information. In: Adriaans P. & van Benthem J. (eds.) Handbook of philosophy of information. Elsevier, Amsterdam: 113–132.
▸︎ Google︎ Scholar
Foerster H. von (1976) Objects: Tokens for (eigen-)behaviors. ASC Cybernetics Forum 8(3–4): 91–96. Reprinted in: Foerster H. von (2003) Understanding understanding: Essays on cybernetics and cognition. Springer, New York: 261–271.
▸︎ Google︎ Scholar
Foerster H. von (2003) Notes on an epistemology for living things. In: Foerster H. von, Understanding understanding: Essays on cybernetics and cognition. Springer, New York: 247–259. Originally published in 1972.
▸︎ Google︎ Scholar
Foerster H. von (2003) Objects: Tokens for (eigen-)behaviors. In: Foerster H. von, Understanding understanding: Essays on cybernetics and cognition. Springer, New York: 261–271. Originally published in 1976.
▸︎ Google︎ Scholar
Foerster H. von (2003) On constructing a reality. In: Foerster H. von, Understanding understanding: Essays on cybernetics and cognition. Springer, New York: 211–227. Originally published in 1973.
▸︎ Google︎ Scholar
Froese T., C. & Rosenblueth D. A. (2013) The dynamically extended mind – A minimal modeling case study. In: IEEE Congress on Evolutionary Computation (CEC 2013), Cancun, Mexico. IEEE Press, Piscataway NJ: 1419–1426.
▸︎ Google︎ Scholar
Fuchs C. A. (2011) Coming of age with quantum information: Notes on a Paulian idea. Cambridge University Press, Cambridge MA.
▸︎ Google︎ Scholar
Gánti T. (2003) The principles of life. Oxford University Press, Oxford.
▸︎ Google︎ Scholar
Garzón P. C. (2012) Plant neurobiology: Lessons for the unity of science. In: Pombo O., Torres J. M., Symons J. & Rahman S. (eds.) Special sciences and the unity of science. Springer, Dordrecht: 121–137.
▸︎ Google︎ Scholar
Gershenson C. (2011) The sigma profile: A formal tool to study organization and its evolution at multiple scales. Complexity 16(5): 37–44.
▸︎ Google︎ Scholar
Gershenson C. (2012) The world as evolving information. In: Minai A., Braha D. & Bar-Yam Y. (eds.) Unifying themes in complex systems Volume VII. Springer, Berlin: 100–115.
▸︎ Google︎ Scholar
Glasersfeld E. von (1979) Cybernetics, experience, and the concept of self. In: Ozer M. N. (ed.) A cybernetic approach to the assessment of children: Toward a more humane use of human beings. Westview Press, Boulder CO: 67–113.
http://www.vonglasersfeld.com/056
Glasersfeld E. von (1991) A constructivist’s view of learning and teaching. In: Duit R., Goldberg F. & Niedderer H. (eds.) Research in physics learning: Theoretical issues and empirical studies – Proceedings of an international workshop. IPN, Kiel: 29–39.
http://www.vonglasersfeld.com/135
Gontier N. (2010) Evolutionary epistemology as a scientific method: A new look upon the units and levels of evolution. Theory in Biosciences 129: 167–182.
▸︎ Google︎ Scholar
2004) A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review 111(1): 1–31.
▸︎ Google︎ Scholar
Goyal P. (2012) Information physics. Towards a new conception of physical reality. Information 3: 567–594.
▸︎ Google︎ Scholar
Granovetter M. (1973) The strength of weak ties. American Journal of Sociology 78: 1360–1380.
▸︎ Google︎ Scholar
Harms W. F. (2004) Information and meaning in evolutionary processes. Cambridge University Press, Cambridge MA.
▸︎ Google︎ Scholar
Harms W. F. (2006) Naturalizing epistemology: Prospectus 2006. Biological Theory 1: 23–24.
▸︎ Google︎ Scholar
Hewitt C. (2007) What is commitment? Physical, organizational, and social. In: Noriega P., Vazquez-Salceda J., Boella G., Boissier O. & Dign V. (eds.) Coordination, organizations, institutions, and norms in agent systems II. Springer, Berlin: 293–307.
▸︎ Google︎ Scholar
Hewitt C. (2012) What is computation? Actor Model versus Turing’s Model. In: Zenil H. (ed.) (2012) A computable universe. Understanding computation and exploring nature as computation. World Scientific, Singapore: 159–186.
▸︎ Google︎ Scholar
Hewitt C., Bishop P. & Steiger P. (1973) A universal modular ACTOR formalism for artificial intelligence. In: Nilsson N. J. (ed.) Proceedings of the Third International Joint Conference on Artificial Intelligence. William Kaufmann, Standford: 235–245.
▸︎ Google︎ Scholar
Heyes C. & Huber L. (eds.) (2000) The evolution of cognition. MIT Press, Cambridge MA.
▸︎ Google︎ Scholar
C.pa.info/author/Heylighen F." target=_blank>Heylighen F., Cilliers P. & C. (2007) Complexity and philosophy. In: Bogg J. & Geyer R. (eds). Complexity, science and society. Radcliffe Publishing, Oxford: 117–134.
▸︎ Google︎ Scholar
Hoffman D. (2009) The interface theory of perception: Natural selection drives true perception to swift extinction. In: Dickinson S. J., Leonardis A., Schiele B. & Tarr M. J. (ed.) Object categorization: Computer and human vision perspectives. Cambridge University Press, Cambridge MA: 148–166.
▸︎ Google︎ Scholar
Jablonka E. & Lamb M. (2005) Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge MA.
▸︎ Google︎ Scholar
Jain R., Rivera M. C. & Lake J. A. (1999) Horizontal gene transfer among genomes: The complexity hypothesis. Proceedings of the National Academy of Sciences of the U. S.A. 96(7): 3801–3806.
▸︎ Google︎ Scholar
Johannessen J.-A. & Hauan A. (1994) Communication – A systems theoretical point of view (Third-order cybernetics). Systems Practice 7(1): 63–73.
▸︎ Google︎ Scholar
Kan D. M. (1958) Adjoint functors. Transactions of the American Mathematical Society 87: 294–329.
▸︎ Google︎ Scholar
Kolmogorov A. N. (1965) Three approaches to the quantitative definition of information. Problems of Information Transmission 1: 1–17.
▸︎ Google︎ Scholar
Laclau E. & Mouffe C. (1985) Hegemony and socialist strategy: Towards a radical democratic politics. Verso, London.
▸︎ Google︎ Scholar
Laclau E. (1990) New reflections on the revolution of our time. Verso, London.
▸︎ Google︎ Scholar
Landauer R. (1996) The physical nature of information. Physics Letter A 217: 188–193.
▸︎ Google︎ Scholar
Luhmann N. (1995) Social systems. Stanford University Press, Stanford. German original: Luhmann N. (1984) Soziale Systeme. Grundriß einer allgemeinen Theorie. Suhrkamp, Frankfurt am Main.
▸︎ Google︎ Scholar
Lungarella M. & Sporns O. (2005) Information self-structuring: Key principle for learning and development. In: Proceedings of the Fourth IEEE International Conference on Development and Learning. IEEE Press, Piscataway NJ: 25–30.
▸︎ Google︎ Scholar
Maturana H. R. (1987) Everything is said by an observer. In: Thompson W. (ed.) Gaia, a way of knowing. Lindisfarne Press, Great Barrington MA: 65–82.
▸︎ Google︎ Scholar
Maturana H. R. (2002) Autopoiesis, structural coupling and cognition: A history of these and other notions in the biology of cognition. Cybernetics & Human Knowing 9(3–4): 5–34.
▸︎ Google︎ Scholar
Morowitz H. J. (1992) Beginnings of cellular life: Metabolism recapitulates biogenesis. Yale University Press, New Haven CT.
▸︎ Google︎ Scholar
Nydahl O. (2008) The way things are: A living approach to Buddhism for today’s world. O Books, London.
▸︎ Google︎ Scholar
Nørretranders T. (1999) The user illusion: Cutting consciousness down to size. Viking, New York.
▸︎ Google︎ Scholar
Pfeifer R. & Bongard J. (2006) How the body shapes the way we think. A new view of intelligence. MIT Press, Cambridge MA.
▸︎ Google︎ Scholar
Pfeifer R. & Gomez G. (2009) Morphological computation – connecting brain, body, and environment. In: Sendhoff K. B., Sporns O., Körner E., Ritter H. & Doya K. (eds.) Creating brain-like intelligence: From basic principles to complex intelligent systems. Springer, Berlin: 66–83.
▸︎ Google︎ Scholar
Pfeifer R., Lungarella M. & Iida F. (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318: 1088–1093.
▸︎ Google︎ Scholar
Popper K. R. (1957) The poverty of historicism. Routledge & Kegan Paul, London.
▸︎ Google︎ Scholar
Purves D., Augustine J. G. & Fitzpatrick D. (eds.) (2001) Neuroscience. Sinauer Associates, Sunderland MA.
▸︎ Google︎ Scholar
Putnam R. (2000) Bowling alone: The collapse and revival of American community. Simon & Schuster, New York.
▸︎ Google︎ Scholar
Reading A. (2011) Meaningful information. The bridge between biology, brain, and behavior. Springer, New York.
▸︎ Google︎ Scholar
Reading A. (2012) When information conveys meaning. Information 3: 635–643.
▸︎ Google︎ Scholar
Riofrio W. (2007) Informational dynamic systems: Autonomy, information, function. In: Gershenson C., Aerts D. & Edmonds B. (eds.) Worldviews, science, and us: Philosophy and complexity. World Scientific, Singapore: 232–249.
▸︎ Google︎ Scholar
Riofrio W. (2010) On biological computing, information and molecular networks. In: Vallverdú J. (ed.) Thinking machines and the philosophy of computer science: Concepts and principles. IGI Global, Hershey PA: 53–65.
▸︎ Google︎ Scholar
Riofrio W. (2011) A molecular dynamic network: Minimal properties and evolutionary implications. In: Burgin M. & Dodig-Crnkovic G. (eds.) Information and computation: Essays on scientific and philosophical understanding of foundations of information and computation. World Scientific, Singapore: 307–330.
▸︎ Google︎ Scholar
Rocha L. M. (1998) Selected self-organization and the semiotics of evolutionary systems. In: Salthe S., Van de Vijver G. & Delpos M. (eds.) Evolutionary systems: Biological and epistemological perspectives on selection and self-organization. Kluwer, Dordrecht: 341–358.
▸︎ Google︎ Scholar
Rössler O. (1998) Endophysics: The world as an interface. World Scientific, Singapore.
▸︎ Google︎ Scholar
Rovelli C. (1996) Relational quantum mechanics. International Journal of Theoretical Physics 35: 1637–1678.
▸︎ Google︎ Scholar
Rozenberg G., Bäck T. & Kok J. N. (eds.) (2012) Handbook of natural computing. Springer, Berlin.
▸︎ Google︎ Scholar
Scheutz M. (ed.) (2002) Computationalism: New directions. MIT Press, Cambridge MA.
▸︎ Google︎ Scholar
Segal L. (2001) The dream of reality. Heinz von Foerster’s constructivism. Springer, Berlin/Heidelberg.
▸︎ Google︎ Scholar
Skyrms B. (2010) Signals: Evolution, learning and information. Oxford University Press, Oxford.
▸︎ Google︎ Scholar
Sloman A. (1996) Beyond Turing equivalence. In: Clark A. & Millican P. J. R. (eds.) Machines and thought: The legacy of Alan Turing. Volume I. Oxford University Press, Oxford: 179–219.
▸︎ Google︎ Scholar
Sloman A. (2002) The irrelevance of Turing machines to AI. In: Scheutz M. (ed.) Computationalism – new directions. MIT Press, Cambridge MA: 87–127.
▸︎ Google︎ Scholar
Sloman A. (2013) Meta-morphogenesis: Evolution and development of information-processing machinery. In: Cooper S. B. & van Leeuwen J. (eds.) Alan Turing: His work and impact. Elsevier, Amsterdam: 849–857.
▸︎ Google︎ Scholar
Smolensky P. & Legendre G. (2006) The harmonic mind: From neural computation to optimality-theoretic grammar. MIT Press, Cambridge MA.
▸︎ Google︎ Scholar
Smolensky P. (1988) On the proper treatment of connectionism. Behavioral and Brain Sciences 11: 1–74.
▸︎ Google︎ Scholar
Soare R. (2009) Turing Oracle Machines, online computing, and three displacements in computability theory. Annals of Pure and Applied Logic 160(3): 368–399.
▸︎ Google︎ Scholar
Sowers K. A. & Schreier H. J. (1999) Gene transfer systems for the Archaea. Trends in Microbiology 7: 212–219.
▸︎ Google︎ Scholar
Stepney S. (2012) Programming unconventional computers: Dynamics, development, self-reference. Entropy 14: 1939–1952.
▸︎ Google︎ Scholar
Strogatz S. (1994) Nonlinear dynamics and chaos. With applications to physics, biology, chemistry and engineering. Addison-Wesley, Boston.
▸︎ Google︎ Scholar
Terzis G. & Arp R. (2011) Information and living systems: Philosophical and scientific perspectives. MIT Press: Cambridge MA.
▸︎ Google︎ Scholar
Turing A. M. (1952) The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B 237: 37–72.
▸︎ Google︎ Scholar
Umpleby S. (2002) The design of intellectual movements. In: Proceedings of the Annual Meeting of the International Society for the Systems Sciences, Beijing, China, 2–6 August 2002. Republished 2006 as 86 in the Karl Jaspers Forum.
http://www.kjf.ca/86-TAUMP.htm
Valiant L. (2013) Probably approximately correct: Nature’s algorithms for learning and prospering in a complex world. Basic Books, New York.
▸︎ Google︎ Scholar
Vedral V. (2010) Decoding reality: The universe as quantum information. Oxford University Press, Oxford.
▸︎ Google︎ Scholar
Wheeler J. A. (1990) Information, physics, quantum: The search for links. In: Zurek W. (ed.) Complexity, entropy, and the physics of information. Addison-Wesley, Redwood City: 3–28.
▸︎ Google︎ Scholar
Woese C. R. (2002) On the evolution of cells. Proceedings of the National Academy of Sciences of the U. S.A. 99(13): 8742–8747.
▸︎ Google︎ Scholar
Zeh H.-D. (2004) Wave function: “It” or “bit”? In: Barrow J. D., Davies P. C. W. & Harper C. L. Jr. (eds.) Science and ultimate reality. Cambridge University Press, Cambridge MA: 103–120.
▸︎ Google︎ Scholar
Zeh H.-D. (2010) Quantum discreteness is an illusion. Foundations of Physics 40: 1476–1493.
▸︎ Google︎ Scholar
Zeleny M. (1977) Self-organization of living systems: A formal model of autopoiesis. International Journal of General Systems 4(1): 13–28.
▸︎ Google︎ Scholar
Zenil H. (ed.) (2012) A computable universe. Understanding computation and exploring nature as computation. World Scientific, Singapore.
▸︎ Google︎ Scholar
Comments: 0
To stay informed about comments to this publication and post comments yourself, please log in first.