Volume 9 · Number 3 · Pages 360–369
Examining the Role of Re-Presentation in Mathematical Problem Solving: An Application of Ernst von Glasersfeld’s Conceptual Analysis

Victor V. Cifarelli & Volkan Sevim

Log in to download the full text for free

> Citation > Similar > References > Add Comment


Context: The paper utilizes a conceptual analysis to examine the development of abstract conceptual structures in mathematical problem solving. In so doing, we address two questions: 1. How have the ideas of RC influenced our own educational theory? and 2. How has our application of the ideas of RC helped to improve our understanding of the connection between teaching practice and students’ learning processes? Problem: The paper documents how Ernst von Glasersfeld’s view of mental representation can be illustrated in the context of mathematical problem solving and used to explain the development of conceptual structure in mathematical problem solving. We focus on how acts of mental re‑presentation play a vital role in the gradual internalization and interiorization of solution activity. Method: A conceptual analysis of the actions of a college student solving a set of algebra problems was conducted. We focus on the student’s problem solving actions, particularly her emerging and developing reflections about her solution activity. The interview was videotaped and written transcripts of the solver’s verbal responses were prepared. Results: The analysis of the solver’s solution activity focused on identifying and describing her cognitive actions in resolving genuinely problematic situations that she faced while solving the tasks. The results of the analysis included a description of the increasingly abstract levels of conceptual knowledge demonstrated by the solver. Implications: The results suggest a framework for an explanation of problem solving that is activity-based, and consistent with von Glasersfeld’s radical constructivist view of knowledge. The impact of von Glasersfeld’s ideas in mathematics education is discussed.

Key words: Mathematics education, mental representation, problem solving, mathematics learning


Cifarelli V. V. & Sevim V. (2014) Examining the role of re-presentation in mathematical problem solving: An application of Ernst von Glasersfeld’s conceptual analysis. Constructivist Foundations 9(3): 360–369. http://constructivist.info/9/3/360

Export article citation data: Plain Text · BibTex · EndNote · Reference Manager (RIS)

Similar articles

Ulrich C., Tillema E. S., Hackenberg A. J. & Norton A. (2014) Constructivist Model Building: Empirical Examples From Mathematics Education
Bednarz N. & Proulx J. (2011) Ernst von Glasersfeld’s Contribution and Legacy to a Didactique des Mathématiques Research Community
Borg P., Hewitt D. & Jones I. (2016) Negotiating Between Learner and Mathematics: A Conceptual Framework to Analyze Teacher Sensitivity Toward Constructivism in a Mathematics Classroom
Cobb P. (2011) Implications of Ernst von Glasersfeld’s Constructivism for Supporting the Improvement of Teaching on a Large Scale
Gandell R. & Maheux J.-F. (2019) Problematizing: The Lived Journey of a Group of Students Doing Mathematics


Arnon I., Cottrill J., Dubinsky E., Oktaç A., Roa Fuentes S., Trigueros M. & Weller K. (2014) APOS theory: A framework for research and curriculum development in mathematics education. Springer, New York. ▸︎ Google︎ Scholar
Asiala M., Brown A., DeVries D., Dubinsky E., Mathews D. & Thomas K. (1996) A framework for research and curriculum development in undergraduate mathematics education. Research in Collegiate Mathematics Education II, CBMS Issues in Mathematics Education 6: 1–32. ▸︎ Google︎ Scholar
Austin J., Smith E., Srinivasan S. & Sánchez F. (2011) Social dynamics of gang involvement: A mathematical approach. Technical Report MTBI-08–08M, Arizona State University. http://mtbi.asu.edu/research/archive/paper/social-dynamics-gang-involvement-mathematical-approach
Beach K. D. (2003) Consequential transitions: A developmental view of knowledge propagation through social organizations. In: Tuomi-Gröhn T. & Engeström Y. (eds.) Between school and work. Elsevier, Oxford UK: 39–62. ▸︎ Google︎ Scholar
Becker J. P. & Shimada S. (eds.) (1997) The open-ended approach. National Council of Teachers of Mathematics, Reston VA. ▸︎ Google︎ Scholar
Behr M., Khoury H. A., Harel G., Post T. & Lesh R. (1997) Conceptual units analysis of pre service elementary school teachers’ strategies on a rational-number-as-operator task. Journal for Research in Mathematics Education 28: 48–69. ▸︎ Google︎ Scholar
Bishop A. J. (1985) The social psychology of mathematics education. In: Streefland L. (ed.) Proceedings of the Ninth International Conference for the Psychology of Mathematics Education. Volume 2. Northern Illinois University, Dekalb IL: 1–13. ▸︎ Google︎ Scholar
Boyd C., Casto A., Crisosto N. M., Evangelista A. M., Castillo-Chavez C. & Kribs-Zaleta C. M. (2000) A socially transmitted disease: Teacher qualifications and dropout rates. Technical Report BU-1526-M, Cornell University. http://mtbi.asu.edu/research/archive/paper/socially-transmitted-disease-teacher-qualifications-and-high-school-drop-out-
Brauer F. & Castillo-Chavez C. (2012) Mathematical models in population biology and epidemiology. Second edition. Springer, New York. ▸︎ Google︎ Scholar
Burkow D., Duron C., Heal K., Vargas A. & Melara L. (2011) A mathematical model of the emission and optimal control of photochemical smog. Technical Report MTBI-08–07M, Arizona State University. Available at http://mtbi.asu.edu/research/archive/paper/mathematical-model-emission-and-optimal-control-photochemical-smog ▸︎ Google︎ Scholar
Cai J. & Cifarelli V. (2005) Exploring mathematical exploration: How two college students formulated and solved their own mathematical problems. Focus on Learning Problems in Mathematics 27(3): 43–72. ▸︎ Google︎ Scholar
Camacho E. T., Kribs-Zaleta C. M. & Wirkus S. (2013) The mathematical and theoretical biology institute – A model of mentorship through research. Mathematical Biosciences and Engineering 10(5/6): 1351–1363. ▸︎ Google︎ Scholar
Campbell R. L. (2001) Reflecting abstraction in context. In: Piaget J., Studies in reflecting abstraction. Edited and translated by Robert L. Campbell. Psychology Press, New York: 1–28. ▸︎ Google︎ Scholar
Cappetta R. & Zollman A. (2013) Agents of change in promoting reflective abstraction: A quasi-experimental study on limits in college calculus. REDIMAT – Journal of Research in Mathematics Education 2(3): 343–357. ▸︎ Google︎ Scholar
Carlson M. P. & Bloom I. (2005) The cyclic nature of problem solving: An emergent multidimensional problem-solving framework. Educational Studies in Mathematics 58(1): 45–75. ▸︎ Google︎ Scholar
Carlson M. P., Oehrtman M. C. & Engelke N. (2010) The precalculus concept assessment (PCA) instrument: A tool for assessing students’ reasoning patterns and understandings. Cognition and Instruction 28: 113–145. ▸︎ Google︎ Scholar
Castillo-Chavez C. & Castillo-Garsow C. W. (2009) Increasing minority representation in the mathematical sciences: Good models but no will to scale up their impact. In: Ehrenberg R. G. & Kuh C. V. (eds.) Graduate education and the faculty of the future. Cornell University Press, Ithaca NY: 135–145. ▸︎ Google︎ Scholar
Castillo-Garsow C. W. (2010) Teaching the Verhulst model: A teaching experiment in covariational reasoning and exponential growth. Unpublished Ph.D thesis. Arizona State University, Tempe AZ. ▸︎ Google︎ Scholar
Castillo-Garsow C. W. (2012) Continuous quantitative reasoning. In: Mayes R., Bonillia R., Hatfield L. L. & Belbase S. (eds.) Quantitative reasoning and mathematical modeling: A driver for STEM Integrated Education and Teaching in Context. WISDOMe Monographs, volume 2. University of Wyoming Press, Laramie WY: 55–73. ▸︎ Google︎ Scholar
Castillo-Garsow C. W. (2013) The role of multiple modeling perspectives in students’ learning of exponential growth. Mathematical Biosciences and Engineering 10(5/6): 1437–1453. ▸︎ Google︎ Scholar
Castillo-Garsow C. W., Castillo-Chavez C. & Woodley S. (2013) A preliminary theoretical analysis of an REU’s community model. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies 23(9): 860–880. ▸︎ Google︎ Scholar
Castillo-Garsow C. W., Johnson H. L. & Moore K. C. (2013) Chunky and smooth images of change. For the Learning of Mathematics 33(3): 31–37. ▸︎ Google︎ Scholar
Catron L., La Forgia A., Padilla D., Castro R., Rios-Soto K. & Song B. (2010) Immigration laws and immigrant health: Modeling the spread of tuberculosis in Arizona. Technical Report MTBI-07–06M, Arizona State University. http://mtbi.asu.edu/research/archive/paper/immigration-laws-and-immigrant-health-modeling-spread-tuberculosis-arizona
Cifarelli V. & Sevim V. (in press) Problem posing as re-formulation and sense-making within problem solving. In: Singer F. M., Ellerton N. & Cai J. (eds.) Mathematical problem posing: From research to effective practice. Springer, New York. ▸︎ Google︎ Scholar
Cifarelli V. V. & Cai J. (2005) The evolution of mathematical explorations in open ended problem solving situations. Journal of Mathematical Behavior 24: 302–324. ▸︎ Google︎ Scholar
Cifarelli V. V. (1988) The role of abstraction as a learning process in mathematical problem solving. Doctoral dissertation, Purdue University, Indiana. ▸︎ Google︎ Scholar
Cifarelli V. V. (1998) The development of mental representations as a problem solving activity. Journal of Mathematical Behavior 17(2): 239–264. ▸︎ Google︎ Scholar
Cobb P. & Steffe L. P. (1983) The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education 14: 83–94. ▸︎ Google︎ Scholar
Cobb P. & Wheatley G. (1988) Children’s initial understandings of ten. Focus on Learning Problems in Mathematics 10: 1–28. ▸︎ Google︎ Scholar
Cobb P. & Yackel E. & Wood T. (1992) A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education 23(1): 2–33. ▸︎ Google︎ Scholar
Cobb P. & Yackel E. (1996) Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist 31(3–4): 175–190. ▸︎ Google︎ Scholar
Cobb P. (2000) Conducting teaching experiments in collaboration with teachers. In: Kelly A. E. & Lesh R. A. (eds.) Handbook of research design in mathematics and science education. Erlbaum, Mahwah NJ: 307–333. ▸︎ Google︎ Scholar
Cobb P. (2008) Implications of Ernst von Glasersfeld’s constructivism for supporting the improvement of teaching on a large scale. Constructivist Foundations 6(2):157–161. http://www.univie.ac.at/constructivism/journal/6/2/157.cobb
Cobb P., Boufi A., McClain K. & Whitenack J. W. (1997) Reflective discourse and collective reflection. Journal for Research in Mathematics Education 28: 258–277. ▸︎ Google︎ Scholar
Cobb P., Confrey J., diSessa A., Lehrer R. & Schauble L. (2003) Design experiments in educational research. Educational Researcher 32: 9–13. ▸︎ Google︎ Scholar
Confrey J. (1990) What constructivism implies for teaching. In: Davis R. B., Maher C. A. & Noddings N. (eds.) Journal for Research in Mathematics Education Monographs 4: 107–122, 195–210. ▸︎ Google︎ Scholar
Confrey J. (1991) The concept of exponential functions: A student’s perspective. In: Steffe L. P. (ed.) Epistemological foundations of mathematics experience. Springer, New York: 124–159. ▸︎ Google︎ Scholar
Constructivist Foundations 3(2): 72. http://www.univie.ac.at/constructivism/journal/3/2/072.hersh
Crisosto N. M., Kribs-Zaleta C. M., Castillo-Chavez C. & Wirkus S. (2010) Community resilience in collaborative learning. Discrete and Continuous Dynamical Systems Series B 14(1): 17–40. ▸︎ Google︎ Scholar
Daugherty D., Urea J., Roque T., Snyder J., Wirkus S. & Porter A. (2009) Mathematical models of bipolar disorder. Communications in Nonlinear Science and Numerical Simulation 14: 2897–2908. ▸︎ Google︎ Scholar
Dawkins P. C. (2012) Extensions of the semantic/syntactic reasoning framework. For the learning of mathematics 32(3): 39–45. ▸︎ Google︎ Scholar
Dewey J. (1910) How we think. D. C. Heath & Co., Boston MA. ▸︎ Google︎ Scholar
Diaz K., Fett C., Torres-Garcia G. & Crisosto N. M. (2003) The effects of student–teacher ratio and interactions on student/teacher performance in high school scenarios. Technical Report BU-1645-M, Cornell University. http://mtbi.asu.edu/research/archive/paper/effects-student-teacher-ratio-and-interactions-studentteacher-performance-hig
Dillon J. L., Baeza N., Ruales M. C. & Song B. (2002) A mathematical model of depression in young women as a function of the pressure to be “beautiful.” Technical Report BU-1616-M, Cornell University. http://mtbi.asu.edu/research/archive/paper/mathematical-model-depression-young-women-function-pressure-be-beautiful
Dubinsky E. (1991) Reflective abstraction in advanced mathematical thinking. In: Tall D. (ed.) Advanced mathematical thinking. Kluwer, Dordrecht: 95–123. ▸︎ Google︎ Scholar
D’Ambrosio U. (1990) The history of mathematics and ethnomathematics. Impact of Science on Society 40(4): 369–377. ▸︎ Google︎ Scholar
Ellis A. B. (2007) The influence of reasoning with emergent quantities on students’ generalizations. Cognition and Instruction 25(4): 439–478. ▸︎ Google︎ Scholar
Evangelista A. M., Ortiz A. R., Rios-Soto K. & Urdapilleta A. (2004) U. S.A. the fast food nation: Obesity as an epidemic. Technical Report MTBI-01–3M, Arizona State University. http://mtbi.asu.edu/research/archive/paper/usa-fast-food-nation-obesity-epidemic
Forman E. A. (1996) Learning mathematics as participation in classroom practice. ▸︎ Google︎ Scholar
Fuchs L., Fuchs D., Prentice K., Burch M., Hamlett C., Owen R., Hosp M. & Jancek D. (2003) Explicitly teaching for transfer: Effects on third-grade students’ mathematical problem solving. Journal of Educational Psychology 95(2): 293–305. ▸︎ Google︎ Scholar
Fuson K. C. (1990) Conceptual structures for multiunit numbers: Implications for learning and teaching multidigit addition, subtraction, and place value. Cognition and Instruction 7: 343–403. ▸︎ Google︎ Scholar
Gainsburg J. (2006) The mathematical modeling of structural engineers. Mathematical Thinking and Learning 8(1): 3–36. ▸︎ Google︎ Scholar
Glasersfeld E. von (1974) Piaget and the radical constructivist epistemology. In: Smock C. D. & Glasersfeld E. von (eds.) Epistemology and education. Follow Through Publications: Athens GA: 1–24. http://www.vonglasersfeld.com/034
Glasersfeld E. von (1984) An introduction to radical constructivism. In: Watzlawick P. (ed.) The invented reality. W. W. Norton, New York: 17–40. http://www.vonglasersfeld.com/070.1
Glasersfeld E. von (1987) Learning as a constructive activity. In: Janvier C. (ed.) Problems of representation in the teaching and learning of mathematics. Lawrence Erlbaum, Hillsdale NJ: 3–17. Originally published in 1983. http://www.vonglasersfeld.com/083
Glasersfeld E. von (1987) Preliminaries to any theory of representation. In: Janvier C. (ed.) Problems of representation in the teaching and learning of mathematics. Lawrence Erlbaum, Hillsdale NJ: 215–225. http://www.vonglasersfeld.com/105
Glasersfeld E. von (1989) Constructivism in education. In: Husen T. & Postlewaite N. (eds.) International encyclopedia of education. Pergamon Press, Oxford UK: 162–163. http://www.vonglasersfeld.com/114
Glasersfeld E. von (1991) Abstraction, ▸︎ Google︎ Scholar
Glasersfeld E. von (1995) A constructivist approach to teaching. In: Steffe L. P. & Gale J. (eds.) Constructivism in education. Lawrence Erlbaum, Hillsdale NJ: 3–15. ▸︎ Google︎ Scholar
Glasersfeld E. von (1995) Radical constructivism. Falmer Press, London. ▸︎ Google︎ Scholar
Glasersfeld E. von (1996) Aspects of radical constructivism and its educational recommendations. In: Steffe L., Nesher P., Cobb P., Goldin G. A., & Greer B. (eds.) Theories of mathematical learning. Erlbaum, Hillsdale NJ: 307–314. http://www.vonglasersfeld.com/185
Glasersfeld E. von (2007) Reconstructing the concept of knowledge. In: Glasersfeld E. von, Key works in radical constructivism. Edited by Marie Larochelle. Sense, Rotterdam: 21–29. ▸︎ Google︎ Scholar
Goldin G. A. (1998) Representational systems, learning, and problem solving in mathematics. Journal of Mathematical Behavior 17(2): 137–165. ▸︎ Google︎ Scholar
Goldin G. A. (2003) Developing complex understandings: On the relation of mathematics education research to mathematics. Educational Studies in Mathematics 54(2–3): 171–202. ▸︎ Google︎ Scholar
Goldin G. A. (2003) Representation in school mathematics: A unifying research perspective. In Kilpatrick J., Martin W. G., & Schifter D. (eds.) A research companion to principles and standards for school mathematics. NCTM, Reston VA: 275–285. ▸︎ Google︎ Scholar
Harel G. & Confrey J. (eds.) (1994) The development of multiplicative reasoning in the learning of mathematics. SUNY Press, Albany NY. ▸︎ Google︎ Scholar
Hersh R. & John-Steiner V. (2011) Loving and hating mathematics: Challenging the myths of mathematical life. Princeton, New Jersey. ▸︎ Google︎ Scholar
Hersh R. (1997) What is mathematics, really? Oxford University Press, Oxford. ▸︎ Google︎ Scholar
Hersh R. (2008) Skeptical mathematics? ▸︎ Google︎ Scholar
Hershkowitz R., Schwarz B. & Dreyfus T. (2001) Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education 32(2): 195–222. ▸︎ Google︎ Scholar
In: Steffe L. P., Nesher P., Cobb P., Goldin G. A. & Greer B. (eds.) Theories of mathematical learning. Erlbaum, Mahwah NJ: 115–130. ▸︎ Google︎ Scholar
Johnson H. L. (2012) Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. The Journal of Mathematical Behavior 31(3): 313–330. ▸︎ Google︎ Scholar
Kersting N. B., Givvin K. B., Thompson B. J., Santagata R. & Stigler J. W. (2012) Measuring usable knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal 49: 568–589. ▸︎ Google︎ Scholar
Kilpatrick J. (1987) Problem formulating: Where do good problems come from? In: Schoenfeld A. (ed.), Cognitive science and mathematics education. Lawrence Erlbaum, Hillsdale NJ: 123–147. ▸︎ Google︎ Scholar
Lave J. (1988) Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge University Press, New York NY. ▸︎ Google︎ Scholar
Lesh R. & Harel G. (2003) Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning 5(2&3): 157–189. ▸︎ Google︎ Scholar
Lester Jr. F. K. (1978) Mathematical problem solving in elementary school. In: Hatfield L. L. & Bradbard D. A. (eds.) Mathematical problem solving. ERIC/SMEAC, Columbus OH: 53–88. ▸︎ Google︎ Scholar
Lobato J. (2003) How design experiments can inform a rethinking of transfer and vice versa. Educational Researcher 32(1): 17–20. ▸︎ Google︎ Scholar
Lobato J. (2006) Alternative perspectives on the transfer of learning. The Journal of the Learning Sciences 15(4): 431–449. ▸︎ Google︎ Scholar
Lobato J. (2012) The actor-oriented transfer perspective and its contributions to educational research and practice. Educational Psychologist 47(3): 232–247. ▸︎ Google︎ Scholar
Lobato J., Ellis A. & Muñoz R. (2003) How “focusing phenomena” in the instructional environment afford students’ generalizations. Mathematical Thinking and Learning 5(1): 1–36. ▸︎ Google︎ Scholar
Lobato J., Hohensee C., Rhodehamel B. & Diamond J. (2012) Using student reasoning to inform the development of conceptual learning goals: The case of quadratic functions. Mathematical Thinking and Learning 14: 85–119. ▸︎ Google︎ Scholar
Locke J. (1690) An essay concerning human understanding. London. ▸︎ Google︎ Scholar
Norton A. (in press) The construction of cohomology as objectified action. RUME XVII Conference Proceedings. Baltimore MD. ▸︎ Google︎ Scholar
Olive J. (2001) Children’s number sequences: An explanation of Steffe’s constructs and an extrapolation to rational numbers of arithmetic. The Mathematics Educator Winter (2001): 4–9. ▸︎ Google︎ Scholar
Ortiz A. R., Murillo D., Sanchez F. & Kribs-Zaleta C. M. (2002) Preventing crack babies: Different approaches of prevention. ▸︎ Google︎ Scholar
Pask G. (1985) Problematic situations. Cybernetic (1): 79–87. ▸︎ Google︎ Scholar
Piaget J. & collaborators (1977) Recherches sur l’abstraction réfléchissante Volumes 1 & 2. PUF, Paris. ▸︎ Google︎ Scholar
Piaget J. (1967) The child’s conception of space. W. W. Norton, New York. ▸︎ Google︎ Scholar
Piaget J. (1970) Genetic epistemology. Columbia University Press, New York. ▸︎ Google︎ Scholar
Piaget J. (1977) Studies in reflecting abstraction. Pyschology Press, Hove, UK. ▸︎ Google︎ Scholar
Piaget J. (1985) The equilibration of cognitive structures: The central problem of intellectual development. University of Chicago Press, Chicago. ▸︎ Google︎ Scholar
Piaget J. (2001) Studies in reflecting abstraction. Edited and translated by Robert L. Campbell. Psychology Press, New York. French original: Piaget J. (1977) Recherches sur l’abstraction reflechissante. PUF, Paris. ▸︎ Google︎ Scholar
Pólya G. (1973) How to solve it: A new aspect of mathematical method. Second edition. Princeton University Press, Princeton NJ. Originally published in 1957. ▸︎ Google︎ Scholar
re-presentation, and reflection: An interpretation of experience and Piaget’s approach. In: Steffe L. P. (ed.) Epistemological foundations of mathematical experience. Springer, New York: 45–67. http://www.vonglasersfeld.com/130
Resnick M. (1997) Turtles, termites, and traffic jams: Explorations in massively parallel microworlds. MIT Press, Cambridge MA. ▸︎ Google︎ Scholar
Romero D. M., Kribs-Zaleta C. M., Mubayi A. & Orbe C. (2011) An epidemiological approach to the spread of political third parties. Discrete and Continuous Dynamical Systems, Series B 15: 707–738. ▸︎ Google︎ Scholar
Schoenfeld A. (1985) Mathematical problem solving. Academic Press, Orlando FL. ▸︎ Google︎ Scholar
Seal S., Rayfield W. Z., Ballard II C., Tran H., Kribs-Zaleta C. M. & Diaz E. (2007) A dynamical interpretation of the three-strikes law. Technical Report MTBI-04–07M, Arizona State University. http://mtbi.asu.edu/research/archive/paper/dynamical-interpretation-three-strikes-law
Sfard A. (1991) On the dual nature of mathematical conceptions. Educational Studies in Mathematics 22(1): 1–36. ▸︎ Google︎ Scholar
Simon M. A. (1995) Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education 26: 114–145. ▸︎ Google︎ Scholar
Simon M., Tzur R., Heinz K. & Kinzel M. (2004) Explicating a mechanism for conceptual learning. Journal for Research in Mathematics Education 35(5): 305–329. ▸︎ Google︎ Scholar
Skemp R. R. (1976) Relational understanding and instrumental understanding. Mathematics Teaching 77: 20–26. ▸︎ Google︎ Scholar
Skovsmose O. & Borba M. (2004) Research methodology and critical mathematics education. In: Valero P. & Zevenbergen R. (eds.) Researching the socio-political dimensions of mathematics education. Springer, Dordrecht: 207–226. ▸︎ Google︎ Scholar
Smith E., Haarer S. & Confrey J. (1997) Seeking diversity in mathematics education. Science and Education 6: 441–472. ▸︎ Google︎ Scholar
Smith J. P., diSessa A. A. & Roschelle J. (1993) Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences 3: 115–163. ▸︎ Google︎ Scholar
Song B., Castillo-Garsow M. A., Rios-Soto K., Mejran M., Henso L. & Castillo-Chavez C. (2006) Raves, clubs and ecstasy: The impact of peer pressure. Mathematical Biosciences and Engineering 3(1): 249–266. ▸︎ Google︎ Scholar
Steffe L. P. & Cobb P. (1988) Construction of arithmetical meanings and strategies. Springer, New York. ▸︎ Google︎ Scholar
Steffe L. P. & D’Ambrosio B. (1995) Toward a working model of constructivist teaching: A reaction to Simon. Journal for Research in Mathematics Education 26: 146–159. ▸︎ Google︎ Scholar
Steffe L. P. & Kieren T. (1994) Radical constructivism and mathematics education. Journal for Research in Mathematics Education 25: 711–733. ▸︎ Google︎ Scholar
Steffe L. P. & Olive J. (2010) Children’s fractional knowledge. Springer, New York. ▸︎ Google︎ Scholar
Steffe L. P. & Thompson P. W. (2000) Teaching experiment methodology. In: Lesh R. & Kelly A. E. (eds.) Research design in mathematics and science education. Erlbaum, Hillsdale NJ: 267–307. ▸︎ Google︎ Scholar
Steffe L. P. (1991) The constructivist teaching experiment: Illustrations and implications. In: Glasersfeld E. von (ed.) Radical constructivism in mathematics education. Kluwer, Dordrecht: 177–194. ▸︎ Google︎ Scholar
Steffe L. P. (1991) The learning paradox: A plausible counterexample. In: Steffe L. P. (ed.) Epistemological foundations of mathematical experience. Springer, New York: 26–44. ▸︎ Google︎ Scholar
Steffe L. P. (1992) Schemes of action and operation involving composite units. Learning and Individual Differences 4(3): 259–309. ▸︎ Google︎ Scholar
Steffe L. P., Glasersfeld E. von, Richards J. & Cobb P. (1983) Children’s counting types: Philosophy, theory, and application. Praeger, New York. ▸︎ Google︎ Scholar
Stephan M. & Rasmussen C. (2002) Classroom mathematical practices in differential equations. Journal of Mathematical Behavior 21: 459–490. ▸︎ Google︎ Scholar
Technical Report BU-1623-M, Cornell University. http://mtbi.asu.edu/research/archive/paper/preventing-crack-babies-different-approaches-prevention
Thompson P. W. & Thompson A. G. (1994) Talking about rates conceptually. Part I: A teacher’s struggle. Journal for Research in Mathematics Education 25(3): 279–303. ▸︎ Google︎ Scholar
Thompson P. W. (1993) Quantitative reasoning, complexity, and additive structures. Educational Studies in Mathematics 26: 165–208. ▸︎ Google︎ Scholar
Thompson P. W. (1994) The development of the concept of speed and its relationship to concepts of rate. In: Harel G. & Confrey J. (eds.) The development of multiplicative reasoning in the learning of mathematics. SUNY Press, Albany NY: 179–234. ▸︎ Google︎ Scholar
Thompson P. W. (2000) Radical constructivism: Reflections and directions. In: Steffe L. P. & Thompson P. W. (eds.) Radical constructivism in action. Falmer Press London: 412–448. ▸︎ Google︎ Scholar
Thompson P. W. (2002) Didactic objects and didactic models in radical constructivism. In: Gravemeijer K., Lehrer R., van Oers B. & Verschaffel L. (eds.) Symbolizing, modeling and tool use in mathematics education. Kluwer, Dordrecht: 197–220. ▸︎ Google︎ Scholar
Thompson P. W. (2008) Conceptual analysis of mathematical ideas: Some spadework at the foundation of mathematics education. In: Figueras O. & Cortina J. L. & Alatorre S. & Rojano T. & Sepulveda A. (eds.) Proceedings of the annual meeting of the international group for the psychology of mathematics education. Volume 1. PME, Morelia: 45–64. ▸︎ Google︎ Scholar
Thompson P. W. (2013) In the absence of meaning. In: Leatham K. (ed.) Vital directions for research in mathematics education. Springer, New York NY: 57–93. ▸︎ Google︎ Scholar
Thompson P. W. (2014) Constructivism in mathematics education. In: Lerman S. (ed.) Encyclopedia of mathematics education. Springer, New York: 1–11. ▸︎ Google︎ Scholar
Tillema E. S. (2010) Functions of symbolizing activity: A discussion. For the Learning of Mathematics 30(1): 2–8. ▸︎ Google︎ Scholar
Verschaffel L. & Greer B. (2000) Book review of “Word problems: Research and curriculum reform” by Stephen K. Reed. Zentralblatt für Didaktik Mathematik (ZDM) 32(3): 62–66. ▸︎ Google︎ Scholar
Vithal R. & Skovsmose O. (1997) The end of innocence: A critique of ethnomathematics. Educational Studies in Mathematics 34(2): 131–157. ▸︎ Google︎ Scholar
Whitenack J. W. & Knipping N. (2002) Argumentation, instructional design theory and student’s mathematical learning: A case for coordinating interpretive lenses. Journal of Mathematical Behavior 21: 441–457. ▸︎ Google︎ Scholar
Yackel E. & Cobb P. (1996) Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education 27(4): 458–477. ▸︎ Google︎ Scholar
Yackel E. (1984) Characteristics of problem representation indicative of understanding in mathematical problem solving. Unpublished doctoral dissertation, Purdue University. ▸︎ Google︎ Scholar
Yackel E. (2002) What we can learn from analyzing the teacher’s role in collective argumentation. Journal of Mathematical Behavior 21(4): 423–440. ▸︎ Google︎ Scholar

Comments: 0

To stay informed about comments to this publication and post comments yourself, please log in first.