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The focus of this paper is the process of knowledge acquisition (KA) and
which role virtuality plays in this context. We argue that there are three dif-
ferent modes of knowledge acquisition which can be identified both in the
domains of cognition and science: the empirical, the “constructive”, and the
“synthetic” mode. We show that the method of constructing knowledge in
the virtual domain (i.e., the synthetic mode of KA) is not only a principal
mode of KA in our cognition (e.g., thought experiments, making plans, etc.).
It becomes increasingly important in the field of (natural) science in the form
of simulations and virtual experiments. The attempt to find an answer to the
question of whether simulation can be an information source for science,
and to validate the computational approach in science, leads to a new inter-
pretation of the nature of virtual models. This new perspective renders the
problem of “feature extraction” obsolete.

 

1. Introduction

 

What are the main characteristic features of a cognitive system? Above all, it is a living
system. As such, it has to be capable of (i) 

 

acquiring knowledge

 

 from the environ-
ment and of (ii) 

 

representing

 

 this knowledge about the environment in one way or
another. Research in cognitive science has developed highly sophisticated (as well as
highly divergent) concepts of knowledge representation (see e.g., Bechtel et al. 1998,
Brook et al. 2000, etc.). However, we will not focus on the second question of how
knowledge is represented in cognitive systems. Rather, the following question will be
addressed: How can knowledge be 

 

acquired

 

 by interacting with the environment?
And, how can knowledge about this environment be 

 

constructed

 

 on the basis of
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these “empirical findings”? More specifically, which 

 

modes of knowledge generation

 

and 

 

knowledge acquisition 

 

(KA) can be found both in the context of cognitive pro-
cesses and of theory development in science? As has been shown in Peschl (2001)
there are close relationships and structural similarities between the process of science
and cognition—in this paper, the focus will be on the process of knowledge acquisi-
tion and production in cognition and science. We are going to do that from an
epistemological as well as from a philosophy of science perspective.

In the course of this paper, it will be shown that three different modes of knowl-
edge acquisition can be identified both in the domain of cognition and of science: (a)
the empirical mode, (b) the “constructive” mode, and (c) the “synthetic” mode of KA
(see section 2). It will turn out that the concept of 

 

virtuality

 

 plays an important role
in this context. Section 4 will (i) develop the implications of the “virtual mode” of
knowledge acquisition for the process of science and cognition; and (ii) investigate
the nature of virtual models. Finally we will examine how the virtual approach ex-
tends the traditional scientific empirical method by introducing the concept of 

 

simu-
lation

 

 in the process of theory formation.

 

2. The Three Modes of Knowledge Acquisition 
in Cognition and Science

 

In order to survive, every organism necessarily needs some kind of knowledge/
representation

 

1

 

 of its environment. Such a statement is in accordance with the stan-
dard definition of an 

 

anticipatory system

 

 as presented by Robert Rosen (1985): It is a
system “containing a predictive model of itself and/or of its environment, which
allows it to change state at an instant in accord with the model’s predictions pertain-
ing to a latter instant” (p. 339). In this paper, the question of interest is, how this
knowledge is acquired from the environment. Our focus is on cognitive processes in
higher animals as well as in science. In addition to the similarities between scientific
and cognitive processes developed in Peschl (2001), it will be shown that there exist
significant parallels regarding the processes of KA as well.

Here is the basic situation which we are confronted with when we are investigat-
ing the representational capabilities of an organism. On the one hand, there is an
organism which has to generate adequate behavior for its survival. In order to do so,
it is obliged to acquire and make use of knowledge about the structure of its environ-

 

1. A rather 

 

broad

 

 

 

notion

 

 of the concept of “representation” is used here. It ranges from very simple
forms of representation in primitive organisms, such as the embodiment of knowledge in phys-
ical or biochemical structures (e.g., the knowledge enabling an organism to follow a chemical
gradient), “up to” complex symbolic or logical structures describing the world.
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ment. On the other hand there is the surrounding environment having a certain
structure and dynamics which is only partially known

 

2

 

 by this organism. 
For an observer, the question arises: How can the—for the particular system—

“relevant” features of this environment be isolated and obtained? How is the knowl-
edge generated which is necessary for the organism’s survival? It seems that there
is some kind of transformation going on within the organism that converts those
relevant features into knowledge structures which enable the organism to generate
adequate behavior?

 

3

 

 Observing our own cognitive abilities as well as the process
of science one can discover that there exists more than one mode of knowledge
acquisition. Figure 1 graphically shows three different modes of KA: (i) the empir-
ical mode, (ii) the mode of construction and abstraction, and (iii) the “virtual
mode”.

 

2. To answer the question whether knowing an environment only partly (or not at all) refers to a
fundamental impossibility—like “(for epistemological reasons) it can never be known” or is it not
yet known—would transcend the scope of this paper. However, as we will show in section 4,
this epistemological question may render superfluous for very different reasons.

3. Of course, this question touches the whole problem of 

 

learning

 

 in representational systems.
However, we are 

 

not

 

 going to discuss this problem, but we will take a more global look at the
epistemological modes of knowledge acquisition.
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Figure 1: Three modes of knowledge acquisition and construction in (human) cognition and
the process of science.
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2.1 The “Empirical Mode” of Knowledge Acquisition

 

The classical mode of knowledge acquisition is what can be referred to as the “

 

em-
pirical approach

 

”. Here, a certain aspect of the environment is detected or perceived
by a sensory system. In a (natural) cognitive system this is assumed to be realized in
the process of perception in the sensory system and in the first steps of processing
these incoming signals. In the context of science, this mode of knowledge acquisition
is the most basic and classical approach to any environment: namely, to make an
experiment and to use gauges for detecting certain environmental states.

What is happening in this mode of KA from an epistemological perspective? The
sensor system is sensitive to a certain state or aspect of the environmental dynamics.
Whenever this state occurs in the environment and the sensory system is present at
the location of this state (transition), a change of states is triggered in the sensory
system as well, i.e., the environmental signal is transformed into an “internal signal”;
in cognitive systems this process is referred to as the process of 

 

transduction

 

. Keep
in mind that due to the internal dynamics of the sensory system, its states do not
exclusively depend on the environmental states, but also by its own 

 

history of state
transitions

 

 and, thus, by its current internal state. Similarly, Foerster (1982) distin-
guishes between trivial and non-trivial machines. It is impossible to fully describe the
latter, since its internal states depend on the history of the system rather than exclu-
sively on the current input. As an example think of the highly adaptive processes in
our visual or auditory sensory systems: Due to external inputs the internal states of
the sensory changes and becomes less receptive to the input. From an outside per-
spective this can be interpreted as “adaptive behavior”. From an internal perspective
this means that the environmental input is distorted.

What is the result of these transduction processes? What kind of knowledge can
we expect to be “acquired” from the environment by applying this mode of knowl-
edge acquisition? Both in science and in cognition this process of perception results
in some kind of 

 

primary representation

 

 of the environment (i.e., primary signals with
representational function). This means that basic features or states of the environ-
mental structure and dynamics are represented as certain states in the sensory system
and in the primary representational processes. However, from what has been said
above follows that these representational states are 

 

not

 

 some kind of direct mapping
of the environmental state—rather they are 

 

system-relative

 

 (in the sense of theory-
laden) states which are modulated by the environmental dynamics (e.g., Riegler,
Peschl & von Stein 1999). One can think of this primary representation as a rather
unordered collection of data which are (a) referring indirectly, i.e., via the construc-
tive transformation process of measuring or transduction

 

4

 

, to certain environmental
states and (b) are coded in the system specific code of the representational system,
be it in patterns of neural activations or electrical charges in a gauge. 
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From an epistemological perspective, there is a fundamental/ontological abyss
between the original environmental states and the representational states—the gap
between these domains is bridged by the process of transduction/measuring. In any
case, this “primary knowledge”

 

5

 

 represents the point of departure and the foundation
for every other operation in the representational domain.

 

2.2 The “Constructive Mode” of Knowledge Acquisition: 
Abstraction, Induction, and Construction

 

In most cases the system-relative primary representational states are per se rather
worthless, because (a) they represent only a certain environmental state at a specific
moment in time and at a specific place in space and, therefore, (b) are an unordered
and uncorrelated collection of representational states or “data” (even if they have
been collected with a specific purpose, they are just a set of data which will be
brought into some order only if a process of interpretation occurs). However, what is
of interest for generating adequate behavior or a scientific theory, is an answer to the
question whether a kind of 

 

structure

 

 is present in these data: classes, correlations
(within one modality and/or more modalities), trends and patterns (in time and
space), etc. Hence, it does not suffice to just collect data by exposing the (natural
and/or artificial) sensory systems to the environment, but to process these data/
signals in such a way that they provide a basis for generating adequate behavior—cf.
the example of Kepler in section 4.3.

 

Active constructive

 

 processes of 

 

abstraction

 

, 

 

classification

 

, 

 

induction

 

, and 

 

ab-
duction

 

 are necessary for bringing some structure into this unordered set of data.
By providing a theoretical context—be it a scientific theoretical framework or al-
ready existing common sense knowledge structures—the semantically neutral val-
ues/signals are brought into a semantic context. This way, a semantic value or
meaning is induced into the data. Furthermore, active processes of (re-)arranging,
searching structures and regularities, etc. are applied to these data in order to
induce and/or project some (again system-relative) classification, spatial, and/or
temporal structure and order into/onto the formerly unordered and uncorrelated set
of signals/data. These active processes of construction refer to the huge body of
questions concerning the problems of learning, induction, classification, adaptation,
evolution, etc. and have been discussed in great detail elsewhere, e.g., Holland et
al. (1992).

 

4. This process introduces a historical aspect which will become an important issue for arguments
made later in section 4.3 when we discuss purely logical deductions within virtual simulations.

5. Compared to scientific theories or our own (common sense) knowledge about the world or other
people, this “primary knowledge” appears rather primitive.
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As opposed to “empirical knowledge”, the constructive mode results in knowl-
edge structures which can be characterized in the following way: 

 

B

 

The 

 

epistemological relationship

 

 to the environmental structures is a relationship
of functional fitness in the sense of Glasersfeld (1984, 1995).

 

B

 

It is not knowledge about a specific entity/state in the environment, but it has
“

 

universal/general

 

” character (within a certain domain). Hence, it is knowledge
which represents some general temporal and spatial 

 

regularities

 

 or patterns
among entities of the primary representation. In this respect the constructive as
well as the system-relative character of the knowledge becomes especially evi-
dent.

 

B

 

In general, knowledge does not only capture a static states of the environment,
but also describes its 

 

temporal dynamics

 

 (e.g., in differential equations, in recur-
rent neural architectures, etc.) This makes it especially interesting for predicting
certain phenomena.

 

B

 

In many cases, this knowledge is not coded in some purely qualitative and/or
subjective terms, but is an 

 

operational knowledge

 

, i.e., knowledge, on which op-
erations can be carried out and which enables us to carry out actions.

 

B

 

One of the implications of the operational character of knowledge is that one
can make 

 

predictions

 

 by applying operations on this knowledge. For example,
by setting the variables of an equation to concrete values it is possible to derive
a concrete result by applying the mathematical operations which are necessary
for solving the equation. This result can be interpreted as a prediction which fol-
lows from the general operational knowledge combined with the concrete situ-
ation (being represented by concrete values in the variables). Predictions are not
necessarily restricted to applying deductive or purely logical methods (an alter-
native would be the use of, say, analogies)—section 4.3 will further develop this
issue.

 

B

 

From prediction one can go one step further to the 

 

manipulation

 

 and 

 

control

 

 of
environmental structures and dynamics, i.e., in many cases the general knowl-
edge about the internal mechanisms can be applied in such a way that one can
actively control and intervene in the environmental dynamics. Every artist or bio-
chemist who has knowledge about the material he or she is working with pro-
vides an example for such a behavior. Modern technologies in computer
industries or biotechnologies have taken this aspect of control and manipulation
of the environmental dynamics to the extreme.
It is this “constructive mode” which creates what we usually refer to as “knowl-

edge”—be it a scientific theory or our common sense knowledge about a certain
aspect of the environment. Learning, adaptation, classification, and construction are
normally the processes which characterize this “standard mode” of knowledge acqui-
sition. However, there is an alternative:
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2.3 The Synthetic Mode of Knowledge Acquisition: 
Generating Knowledge in the Virtual Domain

 

From our experience we know that we can 

 

anticipate

 

 certain situations or events
without the necessity that they happen (physically) in our environment (Riegler
2001). As has been mentioned above, prediction is a first step into that alternative
mode of gaining new knowledge: By applying mental or computational operations
to our knowledge, theory, model, etc., a result is anticipated and/or predicted which
has not yet happened in the environment. In this sense, this result can be referred to
as being “

 

virtual

 

”.
Moreover, our mind, as well as computational methods (as will be shown in

section 3) provide the capacity to 

 

explore potential effects of our own (potential) actions

 

without having to physically externalize these actions/motor actions in our environ-
ment. For instance, whenever we are making 

 

plans

 

 or whenever the method of 

 

simu-
lation

 

 is applied in the process of theory construction, we are entering into this new
mode of knowledge acquisition. In other words, the environment is completely left
aside as a source of new knowledge. The 

 

virtual

 

 domain becomes an alternative stage
for developing new knowledge. Any kind of thought experiment or simulation experi-
ment is an instance of this mode of knowledge acquisition. In the early days of science,
when science and philosophy were still united, this was the prevalent mode of KA.

One could claim that the “constructive mode” of knowledge acquisition (as pre-
sented in section 2.2) is located in the virtual domain as well. In a way that is right:
The formation of, say, a scientific theory is an operation in the representational space.
However, there is always a direct feedback with the environment which is realized
via the verification process of making an experiment. So, what are the new features
which are introduced by this “synthetic mode” of knowledge acquisition? What is it
that makes it a real alternative to the other approaches in the process of KA? There
are a couple of answers to these questions:

(i) Above all, everything happens in the domain of 

 

virtuality

 

, of the representa-
tional space; i.e., in this mode of knowledge acquisition, no further direct interaction
with the environment (e.g., via experiments, via behavior, etc.) is necessary; empiri-
cal experiments are replaced by “

 

virtual experiments

 

”; externalization of behavior is
replaced by thought experiments.

(ii) In the classical approaches, the physical environment plays the role of a 

 

con-
straining

 

 factor in theory formation and knowledge acquisition. Whatever knowledge
structure functionally fits into these environmental constraints counts as adequate
knowledge or theory. As the physical environment has been “lost” in the synthetic mode
of knowledge acquisition, some replacement becomes necessary in order to ensure that
the development of knowledge is constrained by an environment-like entity. Hence,
one does not only need an operational and functional knowledge or model of the
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phenomenon which should be described (i.e., the result of the constructive approach to
knowledge acquisition), but—above that—a 

 

sound model of its environment

 

. Only if
this criterion is satisfied, virtual experiments become possible: One can explore the
effects of one’s actions in the virtual domain. In other words, the model/knowledge of
the phenomenon we are interested in is confronted with the model of the environment
in a virtual experiment taking place solely in the representational/virtual domain.

Hence, the cost of detaching oneself from the physical environment is the necessity
of having to develop a sound model of the environment in which the phenomenon
which one is interested in can be found. Of course, this approach has a lot of implica-
tions as well as risks on the epistemological level, such as a huge problem of theory-
ladenness. Despite these worries, these kinds of models have been applied with some
success in many disciplines, especially in the fields of artificial life

 

6

 

 or cognitive science. 
(iii) The new feature which is introduced by this approach is that potential theory/

knowledge spaces can be 

 

explored

 

 in the virtual space of the representational system
(be it in thought experiments of a cognitive system or in simulation experiments, e.g.,
Peschl 2001). In many cases this reduces the costs as well as the risks drastically, as
the direct contact with the environment can be avoided.

(iv) The final interesting point concerns the question of how the problem of
knowledge construction is approached. Whereas the classical knowledge acquisition
processes follow a rather analytical approach, the mode of knowledge acquisition
being discussed here stresses the aspect of 

 

synthesis

 

 (e.g., Braitenberg 1984). Existing
theories, knowledge, theoretical entities, etc. are synthetically rearranged, taken
apart, put together, tested in an virtual environment, etc. Many models in the field of
artificial life (e.g., Langton 1995) are examples of this synthetic approach. Simulations
are implemented in the form of a set of “ingredients” and rules for the interactions
amongst them. In the course of the simulation these entities interact with each other
and new structures emerge as a result of these interactions. Examples for such models
are Holland’s ECHO (1992) or Menczer and Belew’s LEE (1994). They represent a
class of so-called complex adaptive systems in which a community of distributed
agents evolves in an environment with resources. However, the application of simu-
lation environments like these as knowledge source for scientific investigation isn’t
without problems as one would expect and, thus, is subject of our investigations in
section 4.

Now that we have discussed the abstract and conceptual issues concerning the
role of virtuality in the process of KA, we are going to take a closer look at a practical
application of these concepts in the context of theory development in the (natural)
sciences.

 

6. However, as will be discussed in section 4.1, we do not fully share the enthusiasm about
artificial life.
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3. Virtuality and the Development of 
Scientific Theories

 

What are the implications of these considerations for the process of science? How can
the points having been made above be applied in the process of theory development?
Over the last decades, an interesting shift concerning the mode of knowledge acqui-
sition in the natural sciences can be observed. Many disciplines are moving from the
classical empirical approach to extending their methods with simulation techniques.
Let’s take a closer look at the epistemological as well as philosophy of science impli-
cations of this shift.

 

3.1 The Empirical Approach in Science and Its Virtual Extension 

 

The main task of science is to construct adequate and functionally fitting knowledge.
This arises the question: What is it that makes science such a powerful tool for
understanding and controlling many aspects of our world in an efficient manner? By
following a particular and well established set of 

 

methodological rules

 

, a particular
kind of knowledge is acquired and generated which becomes the basis for the en-
deavor of science as well as for its applications. Any scientific activity aims at con-
structing possible mechanisms which could serve as explanations for an observed
phenomenon. Their explanatory value consists in establishing 

 

causal relations

 

 be-
tween (observable) phenomena leading to such mechanisms which generate these
phenomena. In the natural sciences the classical method of KA consists in the 

 

empir-
ical

 

 approach as the standard means for developing a scientific theory about a certain
aspect of an phenomenon. 

The lower part of Figure 2 shows the classical epistemological feedback loop
between the phenomenon (

 

explanandum

 

) in the environment and its theory (

 

ex-
planans

 

). This cyclic process is based on the “epistemological tension” between a
real phenomenon and its theoretical description. The goal of any scientific endeavor
consists in closing this epistemological gap by applying the classical method of 

 

con-
ducting experiments

 

 in which a theory or hypothesis is tested in interaction with the
environmental dynamics (constraining the process of theory development; e.g.,
Popper 1962; Oreskes et al. 1994).

As has been shown in section 2.3, there exists an alternative method for knowl-
edge acquisition which does not only extend the classical empirical approach but
introduces a new dynamics into the whole process of theory development. Especially
in those areas of science that are concerned with highly complex phenomena—such
as cognition or biomolecular structures—empirical experiments are more and more
extended and, in part, replaced by 

 

simulation experiments

 

. In some disciplines simu-
lation seems to be even an integral part playing the role as primary method for
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knowledge acquisition (e.g., in
cognitive science, artificial
life). As can be seen in the up-
per part of Figure 2, the
method of simulation intro-
duces a 

 

second feedback loop

 

which has a direct influence on
the development of the partic-
ular (empirical) theory. The
empirical loop is extended/
mirrored into the 

 

domain of
virtuality and computation

 

.
The (empirically constructed)
theory is transformed into a
computational model and the
empirical experiment is re-
placed by a 

 

virtual experiment

 

,
i.e., running a simulation of
this model on a computer. The
result of this virtual and cyclic
simulation process is twofold:
(a) It creates predictions for
“real world dynamics”. (b) If
these predictions are not satis-
factory, a possible change in
the computational model may
be necessary which, in turn,
may suggest changes in the

original (empirically based) theory. In this case, a rewritten version of the theory acts
as the starting point for a new cycle of empirical and/or simulation experiments.

 

3.2 Methodological Steps and Epistemological Issues in 
Computer Simulations

 

In order to understand the role of simulation and its epistemological status for sci-
ence, we need to analyze each (epistemologically relevant) step of abstraction in-
volved in this process of simulation and theory construction. Let’s take a closer look
at the following steps and levels of abstraction which can be identified and have to
be gone through in the process of theory construction (for a more detailed discussion
see Peschl & Scheutz 2001).
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Figure 2: 

 

The process of theory construction in science.
The classical feedback loop between a phenomenon in
reality and its description in a theory, the “

 

classical empiri-
cal loop

 

” (lower part). The method of simulation as an ex-
tension establishing a second feedback loop for “virtual
(simulation) experiments”, the “virtual loop” (upper part). 
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(a) Construction of an empirical theory.

 

 Constructing a theory by applying the
“empirical loop” implies a first step of 

 

abstraction

 

: The phenomenon under investiga-
tion is 

 

reduced

 

 to a set of “relevant magnitudes” (i.e., dimensions, parameters, vari-
ables, etc.). The task of the theory is to relate these parameters to each other in such a
way that predictions are possible. Furthermore, their interaction structure should pro-
vide some explanation in the form of possible mechanisms which are responsible for
the generation of the observed dynamics (see also sections 2.1f).

 

(b) Abstract states. In this step the entities of the empirical theory (i.e., variables,
operators/rules, relations, etc.) are transformed into a set of abstract states in which
the physical conditions and constraints (e.g., time, space, etc.) of the original system
become irrelevant. 

(c) Purely causal and computational description. By connecting these states with
each other according to the rules determined by the (empirical) theory, a dynamical
aspect is introduced into the model. In other words, the phenomenon under investi-
gation is reduced to some sort of automaton whose state transitions represent the
underlying mechanism for the generation of the dynamics of the observed behavior at
a highly abstract level. On this level we are dealing with purely causal structures and
computational processes and it is virtually impossible to reestablish the reference to the
original phenomenon under investigation.

(d) Concrete simulation models. In order to satisfy the criterion that a computational
model should have a high explanatory value we have to make a step down in the
hierarchy of abstraction. Only if this highly abstract automaton is transformed back into
a particular model, these abstract causal structures are broken down into computation-
al processes which are related/referring to concrete parameters of the original theory.
Hence, by re-introducing a “meaning” to the entities of the computational/simulation
model the explanatory value is increased on this level of decreased abstraction.

(e) Concrete computer programs. In the next step the model gets implemented as
particular algorithm coded in a particular programming language. 

(f) Conducting the virtual experiment. Finally, this program is executed on a com-
puter—and suddenly the original (empirical) theory seems to become “alive”. The
fascination of such a simulation model is based on the illusion that the observer
ascribes “real” properties, such as “being alive”, to a process which is nothing but a
very cleverly orchestrated change of values in variables over time (combined with a
suggestive graphical output or naming of variables). The dynamic aspect and proper-
ties of the original theory becomes explicit in this process of running the simulation.

(g) Checking with the environment. The execution of the program (i.e., the virtual
experiment) yields results which have to be compared to predictions of the theory or
already existing empirical data. If there are discrepancies, adaptations in the computa-
tional model might become necessary. As a consequence, the original empirical theory
might turn out to be flawed, which implies the necessity for changes in these theoret-
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ical concepts. Furthermore, the results from simulation models can have an “inspiring”
effect on the development of completely new or alternative conceptual perspectives
and/or experimental designs.7 In any case, a change in the empirical theory then
initiates a new cycle of empirical and/or virtual experiments. These steps are repeated
until the theory is such that it functionally fits into the constraints given by the dynam-
ics of the observed phenomenon.

After having discussed these practical issues concerning virtuality and simulation in
science we have to go one step further by critically questioning the (implicit) assump-
tions of the virtual approach to KA and—in some cases—by taking some of our claims
into new realms of conceptual interpretation.

4. Virtual Science

In this section we will more closely investigate the relationship between scientific
activity as knowledge acquisition process and scientific simulation. Of particular
concern is the question whether simulations can actually bring about new scientific
knowledge, or whether we have to disregard them as “ironic science”, like other
authors did (e.g., Horgan 1996); and the question whether knowledge produced by
simulations permits us to understand the phenomena we are interested in, or
whether it is just the attempt of a savage to gain insights by reproducing the
exterior appearance of phenomena? (If the latter is true, how could mathematics
ever be something else than the latter?) Finally, if we accept simulation as a valid
tool for theory development, how do we set up simulation experiments and what
are the mechanisms at work? In particular the problem of feature extraction will be
addressed, as we want the simulation to be a simplified model of the natural
phenomenon. It touches the question whether simulations can be compared to
solving logical–mathematical problems. So, the basic concern of this section is the
question whether simulation can be an information source for science. In particu-
lar, we will try to validate the computational approach in science.

4.1 Simulation and “Virtual Methods” as a Tool for Gaining and 
Generating Knowledge

It has been argued that science relies upon three different ways of gathering knowl-
edge8 (Jackson 1995, 1996): (1) Empirical observations; (2) Mathematical models;
and (3) Computational explorations. Physical observations refer to the process of

7. Churchland et al. (1992) and Gazzaniga (2000) give examples in which simulation models sug-
gested alternative concepts of how a cognitive phenomenon can be understood and investigated.
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gathering data in order to build up an internal model. They are not a model them-
selves and thus are not a source of information. Observations without a model do
not make sense (cf. theory-ladenness). Rather, they are necessary for a model that
fits these “facts”.

In this conceptual framework, only physical models have an exclusive option on
discovering “reality”. And only through a formal mathematical approach we can
establish scientific models. Computation (and simulation) may be another source
but it plays the role of a scout who explores the unknown before civilization (i.e.,
mathematics and physics) dares moving in to this area.

So one may assume that in philosophy of science these sources are often consid-
ered fundamentally different.9 However, we consider this distinction more of an
obstacle than helpful because computational models are just as good as mathemat-
ical models. Any formal logical–mathematical model can be fully mapped onto a
computational system. This equivalence is based on the concepts developed by
Turing (1936). Both, the mathematical and the computational approach are capable
of serving as a model. The only difference is that they are based on different axioms,
that they use different notations and therefore different deductive mechanisms. But
despite this fundamental equivalence, computational models are not fully accepted
as information sources, i.e., as sources that potentially increase scientific knowledge
in the same way empirical observations and experiences do.

What is it that makes a model an information source? Critics of the computational
philosophy of science movement disqualify such models as fancy calculators (Gly-
mour 1993). Horgan (1996) even calls such approaches “ironic science” having no
practical use. Either both mathematical and computational models are valid instru-
ments for science or neither of them. So, why does simulation have a rather bad
image? Can we rescue computational simulation as a “true” form of scientific inves-
tigation? Let us explore this question by looking at the following difference: (1) one
understands what a mathematical equation, say, 

8. This is a slightly different categorization than made in section 2, because the focus is on different
issues in both cases. For the sake of simplicity, we don’t make a distinction between knowledge,
information, and data here. They are all supposed to be synonymous for “experience” made by
the scientist. Of course, such a unified perspective cannot be maintained for philosophical
reasons. 

9. The empirical way of gathering knowledge is aligned with the Aristotelian perspective, hence it
is rooted in the environment; the mathematical–logical approach is compared to a Platonic
world-view in which appearances are but imperfect instantiations of perfect ideas; hence, the
idea has a primacy over the appearances of the environment.

t ′ t

1 v 2 c 2⁄–
--------------------------=
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means vs. (2) one understands what the dynamical behavior of pixels on a screen in
a computer simulation means. 

The discrepancy becomes clear when one takes a closer look at artificial life
models such as Epstein & Axtell (1996) or Deneubourg et al. (1991). There, some
pixels on the computer screen are supposed to represent ants (or people) which are
engaged in some collective work. As these pixels neither include any aspect of the
comparatively complex metabolism of ants nor resemble their appearance (the least
problem), such simulations necessarily leave the spectator with the impression that
they are deliberately designed by the programmer and steered by the program
rather than having some degree of autonomy—at least this is what we would expect
from “natural” systems. Therefore the entire simulation is more like a computer
game than a scientific investigation. The simulated creature reacts according to a
priori specified rules rather than behavioral patterns which are the result of phylog-
eny and ontogeny. Unlike their artificial counterparts, natural ants—at least at the
collective level—seem to understand their environment rather than copying their
behavioral repertoire from biological textbooks like programmers do. Hence we
have to pose the question: Is understanding necessary? Of course, we do not hold
that the capacity to understand is equal in ants and humans. The point is that
successful application of virtual simulations in science necessarily involves a form of
coupling between agent and system rather than mechanical–algorithmic reproduc-
tion of some recipes. This form of understanding will be investigated in the follow-
ing section.

4.2 Understanding and the Reminiscence Problem: 
Models and “Reality” 

The objection of computational simulation by several authors leads directly to a main
philosophical question: What is ‘correct understanding’? Richard Feynman (1985)
came up with an intriguing analogy by introducing the notion of ‘Cargo Cult Science’.
Inhabitants of a fictive island in the South Sea had witnessed the support of goods by
airplanes during World War II. Of course they would have liked this to happen again.
So they started to create runways with fires along their sides; they set up a wooden
hut for a man to sit in, with two wooden plates on his head as headphones, and bars
of bamboo sticks looking like antennas. The form was perfect; everything looked the
way it had been looking before. But, not surprising to us, it didn’t work; no plane
ever landed. From the perspective of embodiment, the lack of understanding results
from a lack of being embodied in the world of Western science and technology. Isn’t
this like mistaking computer pixels for natural ants?

For us, who know about the functional relationships between radio headphones
and antennae, this setup of the island people seems ridiculous. But isn’t that a virtual
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reality as much as our technologically highly powered virtual worlds? Isn’t a simula-
tion just as bad as the functionally worthless wooden equipment in the above exam-
ple? In this regard, scientists and philosophers speak of what has been referred to as
the “reminiscence problem”.

Horgan (1995) quotes Jack Cowan, according to whom “chaoplexologists” suffer
from the reminiscence syndrome: “They say, ‘Look, isn’t this reminiscent of a biolog-
ical or physical phenomenon!’ They jump in right away as if it’s a decent model for
the phenomenon, and usually of course it’s just got some accidental features that
make it look like something.” (p74)

This syndrome resembles the old philosophical conundrum of how to know that
a model of a natural system and the system itself bear any relation to each other (see
also section 4.4). How can a deductively working system, such as mathematics, allow
for building bridges and flying to the moon? 

Firstly, we have to recognize that between understanding a mathematical formula
and pixels on a computer screen, there is no difference. It is just a matter of conven-
tion. People who cannot read and write might actually find the representational form
of pixels more attractive than the mathematical equations. The use of symbols heavily
relies on agreement among the members of the society which makes use of them. For
outsiders they are as much a riddle as the Chinese characters (Searle 1980). Being a
mathematician, or at least familiar with mathematical notation, it is easy to understand
the working of the equation example (1) in the previous section by means of under-
standing the relationships expressed by the mathematical operators. The “–” corre-
sponds to the instruction to take something away from something else. A computer
simulation (example 2) does nothing else than establishing such deterministic rela-
tionships among computational entities—just by using a different set of convention-
ally agreed symbols and instructions.

Let’s investigate the alleged relationship between a model in the virtual domain
and the “original” system in more detail. What we actually do by building a model is
to install a second source of information, namely the model itself in the following
sense (Riegler 1998). Originally, we wanted to investigate the empirically observed
system, but due to its complexity and/or hidden features we are neither able to
sufficiently explain or understand the history of its behavior nor to anticipate the
future behavior. Thus, we build a simplified analogy that we hope exhibits similar or
identical behaviors.10 In order to gain maximum security, we apply our set of scien-
tific deductive methods11. This means, starting from a simplified model we apply
deductions in order to reach some (desired) goal state (cf. the characterization of
problem-solving in terms of means-end analysis by Newell & Simon 1963). If we,
indeed, manage to arrive at our goal state, we can now translate these deductive steps

10. See also section 4.4 for a discussion of iso- and homomorphism.
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back into actions in the natural system in order to achieve the goal state there as well.
This parallel between model and modeled system is referred to as the Tower Bridge
model (Cummins 1989; cf. also Born’s LIR model in this book). And indeed, mathe-
matics seems to validate the applicability of this strategy. We can calculate the stability
of buildings before their construction takes place. Having this success in mind, we
are inclined to believe that all forms of simulation work with logical deductions. The
following section will address this belief. 

4.3 Is Simulation Logic?

By definition, computational models are implemented on a computer which itself is
a physical instantiation of a strictly logical structure, the Turing Machine. Hence, what
is of primary interest is the question of whether we can equate simulation with logic. 

Dennett’s well-known robot analogy (1984) illustrates the shortcomings of the as-
sumption that creatures can tackle their struggle for life in terms of ahistorical logical
reasoning. A robot learns that its spare battery, its precious energy supply, is locked in
a room with a time bomb set to go off soon. To solve this problem, the robot has to
develop plans in order to rescue the battery which is located on a wagon. Equipped
with a logical inference system, it is able to quickly reason that pulling the wagon out
of the room will also move the battery out of the supposedly dangerous room. But the
robot fails because it does not pay attention to the implications of its planned actions.
It did not take into consideration that the bomb is also located on the wagon and,
therefore, stayed close to the battery regardless of where the robot moves the wagon.
A descendent of the robot is constructed in such a way that would allow it to foresee the
effects of its actions. Taking possible side effects into account, however, does not help
either. As the world is very complex, an exhaustive list of all side effects would take too
long to take any action in real-time. Hence, the robot must know how to distinguish
between relevant and irrelevant (side) effects. But even this process of discrimination
needs an enormous amount of computation; all the more as each of the possible effects
must be assigned with some (quantitative) credit in order to evaluate their usefulness.
Therefore, in a logical framework, too many logical implications of even the simplest
actions have to be taken into account. This results in endless computations that prevent
creatures from taking those actions in an acceptable amount of time.

11. Of course, this is only relative security, as Popper (1962) already pointed out several decades
ago. He argued against the idea that the inductive principle of verification could ever lead to
secure knowledge. He was, however, not aware that his falsification imperative cannot yield a
secure knowledge either. One can never be sure whether he or she actually included all explan-
atory components that show that a theory is definitely wrong. Cf. the “imaginary case of planetary
misbehavior” in Lakatos (1970) which shows that even falsification is impossible due to the
infinite repertoire of possible new auxiliary hypotheses that rescues the theory at stake. 
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Not only (artificial and biological) animals suffer from this problem. Let us consid-
er an example from the history of science. Assume, for a moment, that science is
about establishing theories out of empirical data, i.e., scientists stroll through Nature,
observe a certain range of phenomena they are (emotionally?) attached to and pro-
duce protocol data of their perceptions. Afterwards they sit down and try to distill
their data into the shortest description possible —cf. Wigner’s “unreasonable effec-
tiveness of mathematics in the natural sciences” (1960). The latter part is perfectly
“simulated” by computer programs such as BACON (Langley et al. 1987). It receives
data about distances and revolutions of certain planets and is asked to find out about
lawful behavior of those heavenly bodies. And indeed, equipped with the right heu-
ristics it is quite simple to come up with Kepler 1, 2, 3. The achievements of the great
astronomers numerically crunched into dust? Certainly not. Kepler had first to wade
through a huge bulk of data which was mostly the heritage of Tycho Brahe
(Kozhamthadam 1994). And before that he spent many years collecting data himself.
Then he had to make the “right” choice, namely to find out what data items were
relevant and which were not, and which geometrical figure would represent the
orbits of the planets. 

These examples show that it cannot be logic alone with which we create the
mental platform which is used for deriving conclusions. Simply too many logically
possible states have to be taken into account. Solely curve fitting and simple number
crunching cannot be the key to scientific activity, since they leave the scientist with
too many options. As an implication, any attempt to capture all available data and
relationships amongst items of data would require almost infinite logical–computa-
tional performance. We have to somehow reduce the variety and impose restrictions.
In other words, the above insight forces us to focus on the question: What are
relevant features which have to be chosen for such internal trial stages? Let us start
with reviewing related model-theoretical concepts first.

4.4 What Are “Relevant Features”?

Can we find an answer to this question from a model-theoretic point of view? Here,
relevant features are those that allow the model to remain deterministic with respect
to the states and dynamics of the original “natural” system.12 Deterministic means that
the transition from one state to another (whether in the original system or in the
model) is unambiguous: Each time you insert a coin in a drinks dispenser and press
“coffee” it will provide you with coffee rather than with hot chocolate. This introduc-

12. This characterization leaves us of course with the question: What are “states” in “natural” systems?
However, this is exactly the point. We cannot verify assumption concerning the allegedly “true”
nature of environmental states. 



26 Markus F. Peschl and Alexander Riegler

es a homomorphic relationship between both systems. It means that the original
system is simplified to the model system by suitably compounding its states. “Suitable
compounds” refers to the fact that if there are two distinctive states A and B in the
original system that both deterministically transform into another state C, there is no
need to distinguish between A and B in the model system. The model will remain
deterministic. The original system is linked to the model by a many–to–one transfor-
mation. Applying this transformation turns the original system into a system that is
isomorphic to the model (Ashby 1957). Isomorphic means that there is a one–to–one
mapping possible from the states of the one system onto the states of the other. The
dispenser of the above example can be called a homomorphic model of a human
waiter as it compounds the many states which are characteristic of a human into one
variable, being a serving entity. If you order coffee it is irrelevant whether he or she
has brown or black hair, whether he or she is short or tall.

The concept of homomorphic relations is essential to modeling. It requires sub-
suming a variety of features and states in the original system into a new single feature
or state without losing the ability to discern among the interaction these states can
undergo. If an animal is not able to distinguish between predator and prey, it might
not survive. However, if it cannot tell apart a lion from a tiger, this will have no further
consequences as it should avoid both anyway. Being able to distinguish between
those two predators is superfluous knowledge with respect to the essential, i.e.,
relevant, interactions between animal and predator. 

Unfortunately, to determine all relevant factors is far from being a feasible enter-
prise. Two major obstacles can be identified. Firstly, as Dennett’s example of the
logically working robot demonstrates, it is not even necessary to refer to Gödel’s
Incompleteness Theorem to find scientific reasoning restricted within the vast com-
plexity of combinatorics. It is appropriate to state that from an epistemological point
of view that such a situation is highly unsatisfying. On the contrary, we—like the
robot in Dennett’s example—cannot spend almost endless time on building science
by only taking into consideration all possible (borderline) cases. As the predator–
prey example suggests, animals with far less computational power are doing much
better in telling relevant features from non-relevant ones. This ability is due to their
embeddedness in their environment (Riegler, submitted). It means that animals are
equipped with phylogenetically evolved biases which determine where to draw dis-
tinctions and where not in order to avoid the full combinatorial explosion of possible
associations between single features and states. The importance of embeddedness
will be elaborated later in greater detail.

Secondly, note that when establishing this homomorphic relationship between wait-
er and drinks dispenser neither of these systems is an “original natural” system in an
ontological sense.13 It is this matter of fact to which the statement in section 4.2 is
referring to: “what we actually do by building a model is to install a second source of
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information, namely the model itself”. The allegedly natural system itself is already a
model (in our mind). Now consider this being equally true for the relationship between
mathematical equations and the piece of “reality” they are supposed to represent.
However, in the realm of mathematics this seems to be a less transparent issue. The
world of appearances (of reality) is at first glance totally different from the world of
abstract formalisms. Therefore, any claim that both are the result of the same construc-
tively working mind seems to be far-fetched (cf. also the paper of Diettrich in this book). 

Facing these substantial philosophical problems that make it so difficult to find
“relevant” features, should we consider this an impossible enterprise? It is worth look-
ing at a broader context. So far, we have been talking about the reminiscence problem
in scientific simulations, about whether logic can account for successful applications
of simulations, and about iso- and homomorphism. Therefore, one might have the
impression that simulation models are but vehicles for computational theory and/or
science. However, we want to stress the importance of virtuality and simulation for
cognition in general. Here, the notion of embeddedness is not restricted to creatures
living in a physical environment. As argued in Riegler (submitted), only embedded-
ness creates the “appropriate” environment which we requested in section 2. Embed-
dedness means the historical mutual integration of two systems, in particular the
“structural coupling” (Maturana & Varela 1980) of an organism with its environment.
Only this integration brings forth the means to appropriately distinguish between
relevant and non-essential aspects and, thus, is superior to a purely logical approach.

In conclusion, by stretching the definition of embeddedness to encompass any
historical-dynamical enclosure of an entity within its surrounding, we can bridge the
gap between mechanical simulations running on a computer, and the form of simu-
lation that is central to cognition.

What are the implications for setting up scientific simulations? Clearly, embedded-
ness requires a historical component. Not paying attention to this aspect means acting
like the cargo cult people who believe that merely copying the outer appearance into
their simulation of an airport will yield the desired result. It is like mixing ingredients
of a system in a random order and expecting that the system will work nevertheless.
In general, however, systems undergo a development (they have an ontogeny and, in
case of organic systems, also a phylogeny), i.e., a temporally unique order of putting
their components together. Building a house starting with the roof is a trivial example
of how wrong it is to neglect the temporal imperative.

Finally, there are philosophical consequences. That mathematical formulae seem
to be applicable to problems of architecture and other basic and applied sciences has
a similar reason. It has been suggested that reality is algorithmically compressible into
mathematical equations (cf. Wigner 1960). What we propose in this paper follows an

13. In other words, such a homomorphism is system-relative rather than ontologically given.
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inverse logic: It is the formal description which shapes the grid through which we seek
verification in empirical experiments, and which provides us with instructions for how
to build artifacts. As argued above, we do not model a “real” thing; any homomorphic
modeling takes always place between two entities that are already models themselves,
i.e., between entities in/of our mind. This can be claimed for virtual simulation14

experiments as much as for mathematical models. We find here a bit of the Platonic
idea that objects are imperfect realizations of perfect ideas. Indeed, what we claim is
not that mathematics is the compressed description of the world but that “reality” is
constructed by applying (formal) descriptions. The same holds true for simulation
models, as they are, as argued before, another kind of formal descriptions. A simula-
tion that mirrors appearances of a phenomenon in the environment is a cargo cult
simulation. What is required is a “mental embeddedness”. Only if simulation gives rise
to—in a non-ontological sense!–creating new structures in our environment can we
consider the simulation successful. Of course, it is not only mathematics and simula-
tions that have the potential to bring forth reality—there are many more mental tools
do not have any “formal” claim—but simulations may play a vital role in tackling
complex scientific problems in a systematic and powerful manner. 

5. Conclusion: What is the 
Value of Virtuality (in Science)?

Recent developments in the natural sciences have shown that theory development is
increasingly based on conducting virtual experiments. This is mainly due to the fact
that the phenomena of interest have become increasingly complex. Furthermore, as
an implication of this complexity, the costs of empirical experiments have risen
exponentially due to the problem of finding the “relevant pathways” in the space of
possible theories (cf. the discussion about identifying “relevant features” in
section 4.4). One way out of this problem of lack of information is to partially replace
the empirical approach by virtual experiments: i.e., the process of theory develop-
ment and of testing hypotheses is transferred to the domain of virtuality. Modern
computer technology has made it possible to imitate what our cognitive processes are
doing naturally, namely to explore the space of possible theories, models, or knowl-
edge and the effects of their possible actions on the environment without ever having
to leave the realm of virtuality. The criteria for such a successful simulation model
have been discussed in this paper.

Besides economical reasons concerning the process of KA in science, one of the
most important contributions of the virtual approach to the field of science lies in

14. Virtual simulations are those implemented in computer programs or carried out in the mind.
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increasing the explanatory value of a theory. While this is partly accomplished by
introducing dynamic aspects into the theory,15 the main reason is the following.
When using virtual simulation methods for theory development, one is forced to
bring the theory into an operational form. Such a form has an algorithmic character
and is therefore more easily comprehensible by an external person. Furthermore,
such a theory is less trapped in (unimportant) “microscopic” details of the phenome-
non under investigation. Rather, it is situated on a more conceptual and operational
level. This has a positive effect on the cooperation between disciplines because the
structure of the virtual domain forces the participants to use the same language,
otherwise they will not be able to make (virtual) experiments.

When dealing with computational models, one should keep in mind, however,
that one of the main (original) reasons for transferring the process of theory develop-
ment into the virtual domain (by using simulations) is a lack of full accessibility (in
time and/or in space) to the phenomena of interest (e.g., Oreskes et al. 1994). Hence,
one is obliged to be careful with making claims on the basis of such models, because
their task is exactly to bridge this lack of information by replacing environmental
constraints by “virtual constraints”.

In section 4 we even went one step further by proposing a new interpretation of
the nature of virtual models. According to this new perspective it is misleading to
claim that an organism “extracts” information from an environment and passes this
“raw” primary representation over for further “processing” within the cognitive appa-
ratus. As an implication, any model that merely mimics phenomena in a mechanical
way is necessarily a “cargo cult”-simulation and, as such, not to be taken seriously.
Only through spatio-temporal embedding, or “structural coupling”, a model can cap-
ture essential features that allow for successful prediction. This holds true especially
for cognitive but also scientific mathematical models. What we maintain is that math-
ematics does not express a (compressed) description of “reality”. Rather, “reality” is
brought forward in terms of cognitive constructions such as virtual cognitive models
and, in particular, mathematical descriptions. From this point of view, the question of
whether a virtual model is a source of information becomes trivial. However, the
essential point is that it has to be embedded (“synchronized”) within other models
our world-view consists of. Using bamboo sticks as replacement for antennae dem-
onstrates the lack of embeddedness, as the native island people haven’t had any
electronic engineering training.

Although such a perspective may ultimately reverse traditional conceptions, it
holds a great potential to better understand the importance of virtuality. 

15. I.e., by making explicit the dynamics which is in most cases already implicitly present in the
empirical theory. Furthermore, sophisticated and well chosen display techniques are used for
making these dynamic results “alive”.



30 Markus F. Peschl and Alexander Riegler

Acknowledgment

Part of this work was supported by the Fund for Scientific Research – Flanders
(Belgium) (FWO).

References

Bechtel, W. & Graham, G. (eds.) (1998) A Companion to Cognitive Science. Blackwell
Publishers: Oxford.

Braitenberg, V. (1984) Vehicles: Experiments in Synthetic Psychology. MIT Press: Cam-
bridge MA.

Brook, A. & Stainton, R. J. (2000). Knowledge and Mind. A Philosophical Introduction.
MIT Press: Cambridge MA.

Ashby, W. R. (1957) An Introduction to Cybernetics. Chapman & Hall: London.
Churchland, P. S. & Sejnowski, T. J. (1992) The Computational Brain. MIT Press:

Cambridge MA.
Cummins, R. (1989) Meaning and Mental Representation. MIT Press/Bradford: Cam-

bridge MA. 
Deneubourg, J.-L., Goss S., Franks N., Sendova-Franks A., Detrain C. & Chretien L.

(1991) The dynamic of collective sorting robot-like ants and ant-like robots. In: J.-
A. Meyer & S. Wilson (eds.) Proceedings of the First Conference on Simulation of
Adaptive Behavior (SAB). MIT-Press: Cambridge MA, pp. 356–365.

Dennett, D. C. (1984) Cognitive Wheels: The Frame Problem of AI. In: Hookway, C.
(ed.) Minds, Machines, and Evolution: Philosophical Studies. London: Cambridge
University Press, pp. 129–151.

Epstein, J. M. & Axtell, R. (1996) Growing Artificial Societies. Social Science from
Bottom Up. MIT Press: Cambridge MA.

Feynman, R. (1985) Surely You’re Joking, Mr. Feynman! New York: W. W. Norton &
Company.

Foerster, H. von (1982) Molecular Ethology. An Immodest Proposal for Semantic Clari-
fication. In: Foerster, H. von, Observing Systems. Intersystems Publications: Seaside,
pp. 149–188. Originally published in: Ungar, G. (ed.) (1970) Molecular Mechanisms
in Memory and Learning, Georges. Plenum Press: New York, pp. 213–248.

Gazzaniga, M.S. (ed.) (2000) The New Cognitive Neurosciences. MIT Press: Cambridge
MA.

Glasersfeld, E. von (1984) An introduction to radical constructivism. In: Watzlawick, P.
(ed.) The Invented Reality. New York: Norton, pp. 17–40.

Glasersfeld, E. von (1995) Radical Constructivism: A Way of Knowing and Learning.
London: Falmer Press.



Virtual Science 31

Glymour, C. (1993) Invasion of the Mind Snatchers. In: Giere, R. N. (ed) Cognitive
Models of Science. University of Minnesota Press: Minneapolis, pp. 465–474.

Holland, J. H. (1992) Adaptation in Natural and Artificial Systems. 2nd Edition. MIT
Press: Cambridge MA.

Horgan, J. (1995) From Complexity to Perplexity. Scientific American 272: 74–79.
Horgan, J. (1996) The End of Science. Facing the Limits of Knowledge in the Twilight

of the Scientific Age. Addison-Wesley: Reading.
Jackson, E. A. (1995) No Provable Limits to ‘Scientific Knowledge’. Complexity 1 (2):

14–17.
Jackson, E. A. (1996) The Second Metamorphosis of Science: A Second View. Work-

ing Paper 96-05-039. Santa Fe Institute: New Mexico.
Kozhamthadam, J. (1994) The Discovery of Kepler’s Laws. The Interaction of Science,

Philosophy, and Religion. University of Notre Dame Press: Notre Dame. 
Lakatos, I. (1970) Falsification and the Methodology of Scientific Research Pro-

grammes. In: Lakatos, I. & Musgrave, A. (ed.) Criticism and the Growth of Knowl-
edge. Cambridge University Press: London.

Langley, P., Simon, H., Bradhaw, G. L. & Zytkow, J. M. (1987) Scientific Discovery.
MIT Press: Cambridge MA.

Langton, C. G. (ed.) (1995) Artificial Life: An Overview. MIT Press: Cambridge MA.
Maturana, H. R. & Varela, F. J. (1980) Autopoiesis and Cognition: The Realization of

the Living. Reidel: Dordrecht.
Menczer, F. & Belew, R. (1994) Evolving sensors in environments of controlled com-

plexity. In: Brooks, R. & Maes, P. (eds.) Artificial Life IV. MIT Press: Cambridge
MA, pp. 210–221.

Newell, A. & Simon, H. (1963) GPS: A program that simulates human thought. In:
Feigenbaum, E. & Feldman, J. (eds.) Computers and Thought. McGraw-Hill: New
York, pp. 279–293. 

Oreskes, N., Shrader-Frechette, K. & Belitz, K. (1994) Verification, validation, and
confirmation of numerical models in the earth sciences. Science 263: 641–646.

Peschl, M. (2001) Constructivism, Cognition, and Science. An Investigation of Its
Links and Possible Shortcomings. Foundations of Science 6(1–3). In press.

Peschl, M. F. & Scheutz, M. (2001) Explicating the epistemological role of simulation
in the development of theories of cognition. In: Proceedings of the 7th Interna-
tional Colloquium on Cognitive Science (ICCS-01). University of San Sebastian:
San Sebastian, pp. 274–281.

Popper, K. R. (1962) Conjectures and Refutations. The Growth of Scientific Knowl-
edge. Basic Books: New York.

Riegler, A. (1998) “The End of Science”: Can We Overcome Cognitive Limitations?
Evolution & Cognition 4(1): 37–50.

Riegler, A. (2001) The Role of Anticipation in Cognition. In: Dubois, D. M. (eds)



32 Markus F. Peschl and Alexander Riegler

Computing Anticipatory Systems. Proceedings of the American Institute of Physics.
In press.

Riegler, A. (submitted) When Is a Cognitive System Embodied? Submitted to Cognitive
Systems Research, special issue on “Situated and Embodied Cognition”, edited by
Tom Ziemke.

Riegler, A., Peschl, M. & Stein, A. von (eds.) (1999) Understanding Representation in
the Cognitive Sciences. Kluwer Academic/Plenum Publishers: New York.

Rosen, R. (1985) Anticipatory Systems. Pergamon Press: Oxford.
Searle, J. R. (1980) Minds, brains, and programs. Behavioral and Brain Sciences 1:

417–424.
Turing, A. M (1936) On Computable Numbers, with an Application to the ‘Entschei-

dungsproblem’. Proceedings of the London Mathematical Society, Series 2, Volume
42, pp. 230–265.

Wigner, E. P. (1960) The Unreasonable Effectiveness of Mathematics in the Natural
Sciences. Communications on Pure and Applied Mathematics 13: 1–14.

Markus F. Peschl, Dept. for Philosophy of Science, University of Vienna, Sensen-
gasse 8/10, A-1090 Wien, Austria. Email: franz-markus.peschl@univie.ac.at
Alexander Riegler, CLEA, Vrije Universiteit Brussel, Krijgskundestr. 33, B-1160
Brussels, Belgium. Email: ariegler@vub.ac.be


	ref: In: Virtual Reality. Cognitive Foundations, Technological Issues & Philosophical Implications. Edited by A. Riegler, M. Peschl, K. Edlinger, G. Fleck & W. Feigl. Peter Lang Verlag: Frankfurt/M.


