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Abstract. In order to construct scientifically reasoning artifacts we not only have 
to close the loop between hypothesis generation and evaluation but also to make 
the system embodied. To genuinely understand scientific insights, “robot 
scientists” need to represent scientific knowledge within their own representational 
structure rather than in terms of a priori defined logical propositions. Two main 
features of such systems are identified: projective constructivism that reverses the 
flow of information processing, and cognitive canalization that reduces 
computational requirements.  
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Introduction 

Recently, philosophy of science has turned towards the cognitive aspects of scientific activity, 
i.e., it has started to focus on the human scientist who is carrying out science (e.g., Giere 1993; 
Carruthers, Stich & Siegal 2002). The basic assumption of this program is that the same general 
cognitive processes serve as a vehicle for both scientific and non-scientific thinking. Not only 
can such a psychology of science account for the creative aspects of science—as opposed to a 
merely rationalist-logical system in which according to its definition as being a deductive 
system no creativity is possible—it also enables us to think about another perspective: Can 
machines perform creative science as well? Can a psychology of science provide insights and 
mechanisms that—in the long run—can be automatized and therefore passed over to 
computational devices in order to carry out scientific reasoning?  

In this paper, I will explore the road to scientifically reasoning artifacts based on insights 
from cognitive science and epistemology. These artifacts are supposed to go beyond the current 
application of computers that are used as a supportive tool in virtually all disciplines, whether as 
“number crunchers” in mathematics and physics, or as databases to store large amounts of data. 
In both cases they are used to cover deductive facets of scientific activity. A typical example is 
the proof of the famed four-color conjecture (Appel & Haken 1977), which demonstrated that 
using supercomputers to calculate individual cases of the problem is an alternative to proving 
the problem in a traditional mathematical way. In contrast to humans, however, this program 
did not come up with the four-color conjecture in the first place. It merely tracked it 
unremittingly down. 

More sophisticated discovery systems have been around for many years already, such as the 
program “Bacon” (Langley et al. 1987). I will argue that these systems, while being a first 
important step, are flawed in the sense that they are programs whose input is fed by humans and 
whose computational output is interpreted by humans. For scientifically reasoning machines, 



however, creativity does not consist of simply re-arranging existing anthropomorphic pieces in 
novel ways.  

In order to arrive at a more promising approach, I will discuss the problems of present-day 
discovery systems, including the recent “robot scientist” of King et al. (2004). Building on my 
arguments, I will introduce two principles that can be considered basic ingredients of discovery 
systems: projective constructivism and cognitive canalization. Finally, I will provide a synopsis 
of an algorithm based on these principles. 

Problems of discovery programs 

Data-driven discovery programs have been used in various scientific domains. Many of these 
systems perform equation discovery of quantitative laws and have successfully reproduced 
historical findings.  

However, there are severe limitations to such empirically working systems. They face the 
problem that there is a practically infinite amount of ways to extract laws from a given data set, 
known as the empirical underdeterminism of theories. Systems such as “Bacon” (Langley et al. 
1987) have circumvented the problem by using appropriately pre-prepared data. However, this 
procedure does not comply with historical discoveries made by humans where part of the 
problem was to first find the relevant data in the bulk of measured data. Johannes Kepler, for 
example, had first to wade through a huge amount of data collected by his predecessor Tycho 
Brahe and himself over many years (Kozhamthadam 1994). Then he had to make the “right” 
choice, namely to tell relevant data from irrelevant, in order to find the geometrical figure that 
represents the orbits of the planets. It took him thirteen years to come up with the idea that the 
data he had about the movements of the planet Mars fit with the concept of planets revolving 
around the sun in ellipses. Kepler’s case gives rise to the suspicion that pruning a deluge of data 
might not be a rational process at all and thus difficult to implement in machines. Furthermore, 
from the implementation point of view, there is the problem of how to represent empirical 
observations, as in any real-world environment the number of possible propositions and their 
mutual relationships are practically infinite (the “frame-problem,” e.g., Dennett 1984).  

The fact that human science has reached high standards despite the severe limitations of 
human cognition (small short-term memory, emotionally biased evaluation, mental inertia, etc.; 
e.g., Riegler 1998) gives rise to the assumption that human scientists—like human chess players 
(Chase & Simon 1973)—do not use brute “computational” force in order to arrive at new 
discoveries. The success of human science can be partly explained by the social dynamics of 
consensus-seeking and controversy within scientific communities. The challenge, however, is to 
create machines that eventually surpass the limitations of human scientific reasoning. 

The dependency of present-day computer programs on humans regarding data preparation 
and interpretation contributes little to this challenge. Therefore, it has been proposed to “close 
the loop” and let the program not only generate and select hypotheses, but also carry out the 
necessary experiments (Hayes-Roth 1983; Bryant et al. 1999). Very recently, King et al. 
(2004) claimed to have successfully implemented a closed-loop system. They developed a 
“robot scientist,” a system that “automatically originates hypotheses to explain observations, 
devises experiments to test these hypotheses, physically runs the experiments using a laboratory 
robot, interprets the results to falsify hypotheses inconsistent with the data, and then repeats the 
cycle.” The specific goal of the robot scientist—to determine the function of genes from the 
performance of knockout mutants—was implemented as the interplay of abduction and 
deduction; the former infers missing chemical reactions that could explain observed phenotypes, 
the latter checks the consistency of hypotheses generated. The authors emphasize that the “key 
point is that there was no human intellectual input in the design of experiments or the 
interpretation of data.” However, a close look at how the system represents prior biological 



knowledge reveals a rather anthropomorphic picture: nodes in a directed graph denote 
metabolites and its arcs are interpreted as enzymes. This results in a set of logical propositions, 
which are used by the programming language Prolog to compute predictions. So while the 
actual processing cycle might indeed be “human-free,” the algorithm itself is disembodied—a 
criticism that has been applied to symbolic artificial intelligence for many decades. The problem 
with disembodied propositions is a two-fold arbitrariness: (1) the arbitrariness of grounding 
propositions in the world (Harnad 1990); and (2) the arbitrariness of linking up propositions in a 
sensible way, as the following example illustrates. Assume that in an astronomical discovery 
system a proposition such as P1: “perceive (Mars, x, y)” leads to another proposition, say, P2: 
“move (telescope, x', y').” How can P2 be contingent on P1 or, paraphrasing Heinrich Hertz 
(1894/1994), how can P2 be a “denknotwendige” (logically necessary) consequence of P1? The 
transition appears arbitrary; it is as “semantically blind” as the scientific device in Jonathan 
Swift’s Gulliver’s Travels, A Voyage To Laputa. This scientific machine could make “a 
complete body of all arts and sciences” through the mechanical, i.e., syntactical, combination of 
all words in a language. The task of the human user was to pick out the meaningful sentences. 
Obviously, this sort of machines is not able to do that.  

So what does it take to create closed-loop discovery systems that display semantic 
competence and therefore properly represent and understand scientific insights? Quite obvious 
syntactical reconstructions of phenomena are insufficient. Even the most sophisticated computer 
simulations are anthropomorphically designed by the programmer rather than having the degree 
of autonomy natural systems enjoy. For example, in artificial life programs, the simulated 
creatures react according to a priori specified rules rather than behavioral patterns, which are the 
result of phylogenetic and ontogenetic developments. Natural animals seem to “understand” 
their environment rather than to copy their behavioral repertoire from biological textbooks like 
artificial life programmers do. The crucial aspect is that understanding involves a form of 
coupling between agent and system rather than mechanical–algorithmic reproduction of some 
recipes (Riegler 2002). 

Projective constructivism 

Given all the obstacles discussed in the previous sections, Immanuel Kant’s (1781/1991) 
“Copernican Turn” points in the direction of a possible solution. Kant suggested that “objects 
must conform to our knowledge” rather than the other way around, which considers knowledge 
a mirror of the state of affairs in the “objective world.” Kant’s idea radically dismisses any form 
of determinism of the cognizing individual through the outside reality (cf. also Bettoni 1997). In 
other words, it rejects the inductive-empirical mode of knowledge acquisition according to 
which an organism “extracts” information from an environment and passes this “raw” primary 
representation onto further “processing” within the cognitive apparatus. This is what 
contemporary image-processing and data-mining algorithms do: They check mechanically for 
regularities in complex patterns. Only through spatio-temporal embedding, or “structural 
coupling” (Maturana & Varela 1980), can a system capture essential features that allow for 
successful prediction (Riegler 2002). This holds true especially for cognition but also for 
scientific models. Consequently, I claim that neither mathematics (Wigner 1960) nor cognition 
(Wolff 1982; Chater & Vitány 2003) articulate a (compressed) description of “reality”. Rather, 
“reality” is brought forward in terms of cognitive constructions such as (mathematical, 
computational, formal, etc.) structures. I would like to call this assertion “projective 
constructivism.” 

Intuitively, projective constructivism holds responsible for the fact that people have always 
perceived heroic figures and animals in certain stellar constellations. That is, they projected 



some internally generated structure onto a pattern of lights in the night sky. Similarly, people 
may perceive faces in the random formations of clouds, etc. 

Projective constructivism can be considered the opposite of John Searle’s (1980) picture of 
artificial (and human) intelligent systems in his well-known Chinese room argument. The 
person in the room receives characters from outside the room, processes these characters 
according to a rulebook, and passes the re-written characters out of the room. Projective 
constructivism, however, emphasizes that the internal working of the cognitive system (i.e., the 
inmate’s cognitive activity) comes first. It generates (mental) structures—the “rules”—in the 
first place, which are subsequently ascribed to the characters that arrive from outside. In other 
words, the internal “logics” is mapped onto what is perceived as the “outside world.”  

What are the consequences for scientifically reasoning artifacts? Instead of having artifacts 
extracting features from their environment and constructing some models upon which to base 
their reasoning, I propose to reverse the direction and have artifacts project a priori mental 
structures onto “external” sensorimotor experiences. This ties in well with the psychological 
insights of Ulric Neisser (1976). Neisser characterized perception as a schemata-controlled 
“information pickup,” i.e., the organism’s cognitive apparatus (schemata) construct 
anticipations of what to expect and thus enable the organism to actually perceive the expected 
information. What is not anticipated cannot be perceived. For example, a circle drawn in sand is 
perceived as a circle not because of sophisticated image processing in our head, which 
compresses the perceived trace into the mathematical concept of a circle, but due to the 
projection of a mathematically ideal circle onto sensory data.  

Projective constructivism receives empirical support from experiments regarding 
“superstitious perception” (Gosselin & Schyns 2003). The authors stimulated the visual system 
of test subjects with unstructured white noise, i.e., a static bit pattern that has equal energy at all 
spatial frequencies and does not correlate across trials. The subjects were asked to discriminate 
between a smiling and a nonsmiling face, which was allegedly present in 50% of the 
presentations. As a result, the subjects perceived the expected face. These findings confirm 
projective constructivism in the sense that the anticipated pattern was projected onto (partially 
correlated with) the perception of the white noise. 

Also in ethological experiments we find corroborating results. B. F. Skinner’s 1948 article 
on “superstition in the pigeon” describes how birds react in situations beyond their cognitive 
control. Skinner presented food to hungry pigeons at regular intervals, with no reference 
whatsoever to their current behavior. Soon the birds started to display certain rituals between 
the reinforcements, such as turning two or three times about the cage, bobbing their head, and 
incomplete pecking movements. As Skinner remarked, the birds happened to be executing some 
response as the food appeared the first time, and they tended to repeat this response if the 
feeding interval was only short enough. In a certain sense, the pigeons projected the idea of a 
link between behavior and feeding onto their behavioral display. 

Cognitive canalization 

The apparently erroneous projections in these experiments beg the following question. Does not 
projective constructivism imply some degree of arbitrariness in the sense that the mind may 
construct anything it fancies? For obvious reasons, we are compelled to assume that the 
construction of mental structures that precedes actual perception and cognition must not be 
arbitrary; otherwise the mind would drown in a sea of solipsistic structurelessness. In the 
context of robot scientists, this would result in “solipsistic machines.” However, as Piaget (e.g., 
1954) and other developmental psychologists have pointed out, the cognitive faculty develops 
gradually over time rather than being instantiated at once. If we assume that cognition is based 
on constructions, these mental constructions must be regarded as historical assemblies. Their 



historicity imposes a hierarchical structure among the components (Simon 1969) in which more 
recent additions attach to older (and preferentially bigger) ones. Such a hierarchy results in 
mutual dependencies among its components. Removing one component will not only change 
the context (i.e., configuration and connections) of other components but may even destroy the 
accessibility of those components altogether if the removed part served as a hub in the sense of 
Barabási (2002). The dependencies result in canalization. It severely restricts the degrees of 
freedom in the way future constructions can be added. If added in wrong places, they would 
cause disruption or even disintegration. In the context of cognitive systems, we can speak of 
self-generated cognitive canalization, which prevents the constructions of the mind from being 
arbitrary (Riegler 2001b). 

Cognitive canalization can be compared with the effect an ever expanding jigsaw puzzle has 
on newly added pieces. Each piece that has found a place where it fits locks in with its 
neighbors. By doing so, it also expands the puzzle’s border, which in turn enables the addition 
of further pieces. On the one hand, the more pieces lock in the larger the puzzle becomes and 
the more pieces can be attached. But on the other hand, the actual shape of the expanding border 
of the puzzle determines which sort of pieces can be attached next. Consequently, canalization 
results in irreversibility (or asymmetry). Systems, whether natural or artificial, are driven into a 
continuous complexification of their structure, thus yielding asymmetry in time, caused by 
internalist rather than externalist mechanisms (Riegler 2001a).  

Synopsis of the algorithm  

A prototype that implements both principles is the “constructivist–anticipatory algorithm” (cf. 
Riegler 1994). Lack of space prevents a detailed description of the algorithm but it can be best 
characterized as a semi-neuronal production system, which, in contrast to programs based on 
logical inferences over propositions, does not a priori specify how knowledge is represented. In 
order to avoid the fallacy of anthropomorphically defined logical propositions, the basic 
representational structure are schemata, i.e., compounds of conditions and sequences of actions, 
working on memory cells. In the spirit of Mach’s (1897) and Bridgman’s (1927) 
operationalism, schemata represent sensorimotor knowledge, i.e., the anticipation of how to 
handle things under certain conditions with the proper action sequence. The condition part 
provides context matching which allows the schema that best fits the present context to execute 
its action sequence. As soon as a schema finishes, context matching starts again.  

The aspect of projective constructivism is implemented as the evaluation of schemata. Once 
invoked, the schemata ask for sensory or internal data only when they need them. In other 
words, the algorithm, which projects its dynamical structure outward, neglects environmental 
events except for the demands of the current action sequence. This leads to a significant 
decrease in computational costs, since the agent equipped with the algorithm need not extract 
the full environmental information each time step. The algorithm is in sharp contrast to the 
information-processing paradigm that defines the cognitive system as a bottleneck: the essential 
features would need to be selected among the wealth of “information” provided by the “outside” 
in order to decrease the enormous degree of complexity.  

However, the system goes beyond a simple stimulus-response device by implementing 
cognitive canalizations as follows. Conditions, actions, and schemata can be mutually 
embedded resulting in a hierarchical arrangement. Since conditions can also be part of a 
sequence, they act as checkpoints for determining whether the anticipation embodied by the 
schema is still on the right track. This means that action sequences (at a lower level) are carried 
out as long as (higher-order) conditions do not veto it. The layers can be stacked upon each 
other such that schemata refer to the working of other schemata in an increasingly abstract 
fashion. Consequently, abstract knowledge emerges at the outer boundaries of hierarchical 



assemblies but is ultimately embodied as it depends on ontogenetically older lower-level 
sensorimotor elements.  

The features of the algorithm can be summarized as follows. The “semantics” of the cells 
that the cognitive apparatus works on is not projected from outside into the system. Rather, the 
system actively produces predictive hypotheses the validity of which is tested against external 
states. Since schemata do not regard data that lies “by the wayside” (i.e., irrelevant data that is 
not a priori represented in schemata), the system’s overall knowledge acquisition is both 
accelerated and canalized. In contrast to other programs, this system introduces a novel 
algorithmic framework for computational discoverers, which neither rely on massive data 
extraction nor suffer from obstacles such as the frame problem. 

Conclusion 

I described closed-loop discovery systems as an opportunity to go beyond the cognitive 
limitations of human scientists, and as a completion to scientific research groups, which are 
hampered by an administrative and social overhead.  

In order to make such scientific artifacts possible, I advocate two major concepts that need 
to be taken into consideration. (1) Projective constructivism, i.e., the reversal of the flow of 
“information-processing” where the flood of sensory data is not (algorithmically) compressed 
but projected onto by prior mental structures; (2) cognitive canalization, i.e., the claim that the 
apparent cognitive limitations of the human mind are an expression of its canalizations. Both 
concepts make artificial closed-loop discovery systems feasible in the sense that they reduce 
computational requirements and implement embeddedness in the respective domain of 
reasoning. 
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