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ABSTRACT

Hegselmann and Krause have developed a computational model for study-
ing the dynamics of belief formation in a population of epistemically in-
teracting agents who try to determine, and also get evidence concerning,
the value of some unspecified parameter. In a previous paper, we extended
the Hegselmann-Krause (HK) model in various ways, using the extensions
to investigate whether, in situations in which random noise affects the ev-
idence the agents receive, certain forms of epistemic interaction can help
the agents to approach the true value of the relevant parameter. This paper
presents an arguably more radical extension of the HK model. Whereas in
the original HK model each agent is solely characterized by its belief, in
the model described in the current paper, the agents also have a location
in a discrete two-dimensional space in which they are able to move and
to meet with other agents; their epistemic interactions depend in part on
who they happen to meet. We again focus on situations in which the evi-
dence is noisy. The results obtained in the new model will be seen to agree
qualitatively with the results obtained in our previous extensions of the HK
model.

Modern science is largely a community enterprise; scientists working in rel-
ative isolation from their colleagues, in the way Kepler or Newton did, are
exceptionally rare nowadays. Interactions between working scientists are
multiple and multifarious, ranging from jointly carrying out experiments
and coauthoring papers to discussing half-baked ideas during coffee breaks.
As a result of this, or perhaps as a direct effect of a separate form of epis-
temic interaction, a scientist’s belief on a given matter will often be influ-
enced to at least some extent by his or her colleagues’ beliefs on the same
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matter. But—one may ask—is this for better or for worse? It is not entirely
inconceivable that in general scientists would do best, in terms of achieving
whatever epistemic goals their research is meant to serve, by going purely
by the data, and not allowing their beliefs to be affected by those of any
of their colleagues. At a minimum, the said form of interaction might be
inessential from a strictly scientific perspective.

In previous work, we have begun studying this matter from a truth-
tracking perspective, that is, with an eye towards answering the question
whether various forms of adjusting one’s belief in response to learning the
beliefs of others can help one to achieve the scientific goal of approximating
the truth (see Douven, 2009 and Douven and Riegler, 2009). In that work,
we could build on pioneering research carried out by Rainer Hegselmann
and Ulrich Krause, who in a series of papers have developed a model for
investigating the dynamics of belief formation in societies of truth-seeking
agents.1 While the merits of their work are beyond doubt, it has also been
observed that their model has severe limitations. Especially if one wants
to use it to study the aforementioned questions, many of the assumptions
of the Hegselmann-Krause (HK) model cannot but strike one as being too
idealized. In our own earlier work, we have sought to take some first steps
towards “concretizing” the HK model (in the sense of Nowak 1980), that
is, we have proposed extensions of the model that do away with some of
the idealizations inherent in it. Most importantly perhaps, we gave up the
assumption that the agents in the model receive “noise-free” experimen-
tal data. The resulting model enabled us to argue that particular ways of
responding to learning the beliefs of certain colleagues are, from a truth-
tracking viewpoint, clearly preferable as an epistemic strategy to ignoring
those beliefs and going purely by the data, at least in environments in which
the data are noisy—as they tend to be in reality.

Still, many more limitations of the HK model remain to be addressed if it
is to inform us about the value (or otherwise) of the said form of epistemic
interaction as it is to be observed in the practice of science. One of the
major impediments in this respect is that, in the HK model, all agents are
supposed to be privy to the beliefs of all the other agents at any time. Due
to this, the model would seem to apply to only a very limited range of actual
situations. Perhaps it is true that the members of a research group are mostly
aware of each other’s beliefs (insofar as these are relevant to their ongoing
research). But epistemic interaction is not restricted to members of one
and the same research group, and it would certainly be false to suppose

1 See Hegselmann and Krause (2002, 2005, 2006).
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that scientists are generally aware of the beliefs of all others—members of
different research groups included—working in their field. To overcome this
problem, we below present a further extension of the HK model in which
agents are only aware of the beliefs of the subgroup of agents who they
happen to meet at a given time. Specifically, and in contrast to the HK
model, we endow agents with a location in a discrete two-dimensional space
in which they are able to move about and to meet with other agents. These
meetings determine, at least partly, with whom they epistemically interact.
We examine various aspects of this new model. Again, we also focus on
situations in which the agents receive noisy data. It will be interesting to see
that the results obtained in the new model agree, at least qualitatively, with
the results obtained in our previous extensions of the HK model.

1. The Hegselmann–Krause Model and Beyond

The HK model was devised to investigate the dynamics of belief forma-
tion in populations of epistemically interacting truth-seeking agents. In the
model, a population consists of n agents, where each agent i (16 i6n) holds
a belief xi(t) at any time step t. The agents try to ascertain the value τ of
a given parameter (which could be the mass of some particle, the viscosity
of a fluid, the probability of life on Mars, etc.). It is assumed that τ∈ [0,1],
and that the agents know this antecedently; thus xi(t)∈ [0,1] for all i and t.
At discrete time steps, the agents simultaneously update their beliefs, where
the following rule gives the belief of agent i at time step t +1 as a function
of the agents’ beliefs at t and the true value of the parameter:

xi(t +1) = α
∑ j∈Xi(t) x j(t)

|Xi(t)|
+(1−α)τ. (1.1)

Here, |Xi(t)| is the cardinality of Xi(t), which is defined to be the set of
agents whose beliefs are “close enough” to the belief of agent i at t, or, in
Hegselmann and Krause’s terminology, that are within i’s bounded confi-
dence interval (BCI) at t. More exactly, Xi(t) = { j : |xi(t)− x j(t)|6 ε}, for
some real-valued ε . If j∈Xi(t), we shall say that j is an epistemic neighbor
of i at t; note that, trivially, every agent is its own epistemic neighbor at any
time. Furthermore, α∈ [0,1] is a weighting factor that determines the degree
to which the agents’ beliefs depend on those of their epistemic neighbors.
In short, at each time step the new belief of an agent is calculated as the
weighted average of the average of the beliefs of all its epistemic neighbors
and the true value of the parameter. We shall say that an agent talks to its
epistemic neighbors iff both α > 0 and ε > 0. We might thus say that, if in
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addition α < 1, an agent’s new belief is the outcome of the combination of
talking to its epistemic neighbors and making experiments, where the results
of the experiments point in the direction of τ . In their papers, Hegselmann
and Krause present some analytic results about this model, but for the most
part they explore its properties by means of computer simulations.2 In par-
ticular, they study the relation between the various parameters of the model
and the convergence of the agents’ beliefs to τ .

In our earlier-cited papers, we noted that the assumption, inherent in the
HK model, that the agents receive precise evidence pointing in the direction
of τ is not particularly realistic; in reality, scientists have to live with mea-
surement errors and other factors that make their data noisy. For this reason,
the assumption was dropped in the extension of the HK model presented
in Douven (2009); this model explicitly allows data to be noisy. A further
assumption of the original HK model that seemed questionable to us was
that the agents’ beliefs all weigh equally heavily in the updating process;
the model is thereby unable to reflect the fact that in scientific practice the
beliefs of some count for more than those of others. These considerations
led us in Douven and Riegler (2009) to propose a further extension of the
HK model that replaces (1.1) by

xi(t +1) = α
∑ j∈Xi(t) x j(t)w j

∑ j∈Xi(t) w j
+ (1−α)

(
τ + rnd(ζ )

)
. (1.2)

In this equation, w j denotes the fixed reputation of agent j, and rnd(ζ ) is
a function returning a unique uniformly distributed random real number in
the interval [−ζ ,+ζ ] each time it is invoked (ζ ∈R).

The main result of the computer simulations that we used to investi-
gate this model can be put thus: in situations in which evidence obtained
in experiments is noisy, populations of agents that attribute more weight to
talking to each other (i.e., that have a higher value for α) converge to τ more
accurately, albeit more slowly, than do populations that give less weight to
talking and rely more on the evidence. See Douven (2009) and Douven and
Riegler (2009) for the details. Reputation, on the other hand, appeared to
have little to no effect on the outcome of the simulations. See Douven and
Riegler (2009) for the details.

While we thus did away with some limitations of the HK model, it still
holds for the models described in the aforementioned papers that all agents

2 For the many virtues of this approach for investigating belief dynamics in multi-agent
systems, see Humphreys (1991), Epstein and Axtell (1996), Hartmann (1996), Gaylord and
D’Andria (1998), and Winsberg (1999), as well as the papers cited in the previous note.
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are supposed to know, at any time, the beliefs of all the other agents. As
intimated, this reduces the scope of the model considerably; the number of
colleagues with whom scientists collaborate, or whom they meet at confer-
ences, is generally just a fraction of the number of their epistemic neighbors.
In the following, we describe an extension of the HK model that deviates
more drastically from the original and that eliminates the said unrealistic as-
sumption by letting agents move about in a two-dimensional environment in
which they encounter others and interact only with the epistemic neighbors
they happen to meet.

2. Adding Spatial Dimensions

In order to accurately model the aspect of encountering epistemic neigh-
bors, we extended the HK model by introducing spatial dimensions. More
concretely, each agent (exclusively) populates a site in a discrete two-dimen-
sional toroidal grid, that is, a grid whose outside borders wrap around to the
opposite side in order to avoid edge effects. (Such effects would, for ex-
ample, reduce the number of possible adjacent neighbors for any agent at
an edge, or in a corner, of the grid.) Our usage of discrete two-dimensional
environments is neither original nor arbitrary, as they have long proven to
be valuable tools in disciplines such as artificial life and sociology (see, e.g.,
Epstein and Axtell, 1996 and Gaylord and D’Andria, 1998).

To be more specific, the environment consists of a two-dimensional grid
of 25×25 sites each of which can either be empty or occupied by an agent.
Agents face one of the four cardinal points of the compass. They move
about by leaping to the adjacent free site they are facing. As noted above,
unlike in the original HK model and our earlier extensions thereof, in which
an agent at each time step interacts with all its epistemic neighbors, in the
present model it interacts only with those of its epistemic neighbors that are
to be found in its spatial neighborhood. That is to say, for all i, j, and t,
agent i epistemically interacts with agent j at time t iff:

1. j is in the epistemic neighborhood of i, that is, |xi(t)− x j(t)|6 ε , and
2. j is in the spatial neighborhood of i.

The notion of spatial neighborhood can be—and in the literature has been—
defined in various ways. In our simulations, we made use of the three neigh-
borhood structures depicted in Figure 1, which are relatively common in the
literature (see, e.g., Gaylord and D’Andria, 1998). Following a suggestion
of Gaylord and D’Andria (1998), we also considered a variation of the von
Neumann neighborhood in which only those agents are considered that face
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Figure 1: Three neighborhood structures: von Neumann (left);
Moore (center); Gaylord-Nishidate (right). In each case, j and k are
spatial neighbors of i, whereas l is not

one’s own position (for the other two neighborhoods this extra “facing” con-
dition makes no sense).

In accordance with the distinction between epistemic and spatial neigh-
borhoods, the development of agents through time is characterized by both
a belief-update rule and a migration rule. As in the HK model, the update
rule takes care of the belief transitions an agent can undergo from one time
step to another. The migration rule determines how agents move about in
their environment. The former looks thus:

xi(t +1) =

{
α

∑ j∈Xi(t) x j(t)
|Xi(t)| +(1−α)

(
τ + rnd(ζ )

)
if |Xi(t)|>1,

xi(t) otherwise,
(2.1)

where Xi(t) now designates the set of i’s epistemic neighbors at t that are
also within its spatial neighborhood at that time. Note that the upper clause
of equation (2.1) corresponds to equation (1.2) with reputation w j = 1 for all
j. This clause is invoked whenever there is at least one epistemic neighbor
present in the spatial neighborhood besides the agent itself. If |Xi(t)| =
1, agent i’s belief remains unchanged from t to t + 1. The migration rule
simply says that after an agent has updated its belief, it moves one step to
the adjacent site it faces if that is free and not faced by at least one other
agent, or else it randomly changes its orientation to any of the four cardinal
directions (see Gaylord and D’Andria, 1998 for details).

3. Exploring the Model

In this section, we present the results of computer simulations we conducted
in order to explore systematically the properties of our two-dimensional
model. Like Hegselmann and Krause in the investigations of their model,
we were particularly interested in questions concerning the relation between
the values for the parameters α and ε and a population’s ability to track the
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truth. First, however, we wanted to be clear about the role the type of the
spatial neighborhood plays in this regard.

3.1. Different Spatial Neighborhoods

Given the different definitions of the notion of spatial neighborhood, one
may ask which of these yields the best results in terms of accuracy and speed
of convergence of the agents’ beliefs to the value of τ . We put the four types
described in the previous section to test by comparing two populations of
n = 100 agents that attribute different weights to talking (α = .1 and α = .9,
respectively). For both these populations, it holds that ζ = .1 and ε = .1.
We ran 100 simulations for each of the two populations and each of the four
spatial neighborhoods, yielding eight trials of 100 simulations in total. In
these, as in all other simulations we performed for the present paper, we set
τ = .75. For each trial, we calculated, at each time step, the average over
the 100 simulations of the average distance from the truth of the beliefs of
all the agents in the population, where the distance from the truth of agent
i’s belief at t was simply taken to be |xi(t)− τ|.

The results are shown in Figure 2. The most accurate and also fastest
convergence is achieved by the Gaylord-Nishidate neighborhood (solid
line), followed by Moore (dashed), von Neumann (dotted), and von Neu-
mann facing (dash-dotted). This is so regardless of whether the agents
give much weight to the evidence (low value for α) or rather to talking
to others (high value for α), although in the former case the differences
between the various neighborhoods are less pronounced. We opted for
the Gaylord-Nishidate neighborhood in all further experiments. That the

Figure 2: Convergence in different neighborhoods. The abscissa
represents time steps, the ordinate is the average distance from τ .
Left: α = .1; right: α = .9

Gaylord-Nishidate neighborhood, which encompasses more surrounding
sites than any of the other neighborhoods, is superior in terms of conver-
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gence to the truth can already be considered as a first indication that, at least
if the evidence the agents receive is noisy, the present model makes talking
to others come out as a good epistemic strategy.

3.2. The Weight of Talking

The foregoing would clearly square with the earlier-cited conclusion of
Douven and Riegler (2009) that, in situations in which evidence is noisy,
giving much weight to talking to one’s epistemic neighbors is an effec-
tive scientific strategy. But does this conclusion really carry over to the
two-dimensional model? Given that in this model most of one’s epistemic
neighbors may be unavailable for talking at any given time step, the answer
is not straightforward.

Talking is not a yes/no affair in the original HK model, in our previous
extensions of that, or in the two-dimensional model. “How much” talking is
going on in a population depends in all these models on the values of α and
ε . To investigate the impact of varying these values in the two-dimensional
model, we first systematically increased the value of ε between 0 and .3,
in steps of .05, in two populations, one with α = .1, the other with α =
.9. We ran 100 simulations with a population of n = 100 agents for each
combination of α and ε . Interpolated results for the entire range of ε-values
are shown in Figure 3.

Figure 3: Varying ε for ζ = .3. Left: α = .1; right: α = .9

The results suggest that, at least for the given level of noise, the larger
ε the more accurate the convergence. Still, the value of α is seen to matter
as well. For populations of agents that assign a value of only .1 to α , con-
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vergence to τ is far less accurate than for populations of agents that assign
a value of .9 to α .

For additional clarity, Figure 4 shows the convergence to τ for only four
selected combinations of values for α and ε . It indicates clearly the advan-
tage of assigning higher values to both α and ε for approaching τ . (We

Figure 4: Dashed lines: α = .1; solid lines: α = .9. Gray lines:
ε = 0; black lines: ε = .3

also ran simulations for ζ = .1 and ζ = .2, but this did not lead to a quali-
tative difference in the outcome. Quantitatively, the differences between the
different parameter settings are a bit more pronounced with ζ = .3, which
is why we used this value for producing the graphs.)

In further computer experiments, we systematically increased the value
of α between 0 and 1, again in steps of .05, keeping ε fixed at .2.3 In
these experiments, it appeared that the closest approximation to the truth
was reached if α was given a value close to 1, as can be gleaned from Fig-
ure 5. While a high value for α delays the convergence, convergence is
ultimately more accurate, that is, it leads to a smaller average distance of
the agents’ beliefs from τ . Based on these results, it would seem that sci-
entists interested in quick approximate solutions should give less weight to
talking than to the evidence they obtain, whereas scientists who want to ap-
proach τ as closely as possible—which from a purely scientific perspective
would seem to be the more desirable goal—are well advised to do the oppo-
site and rather give less weight to the evidence and more to talking to others.

3 Again we used various values for ζ , and again this did not significantly influence the
results. We also again ran 100 simulations for each relevant combination of the parameters.
All experiments to be reported below have the same set-up.
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This is fully in line with the above-mentioned conclusion from Douven and
Riegler (2009) about our simpler extensions of the HK model.

Figure 5: Varying α for ζ = .2. Right: comparison of α = .1
(gray) and α = .9 (black)

3.3. Elite Versus Normal Scientists

Following Douven and Riegler (2009), we also in the two-dimensional
model performed experiments in which we tried to model a distinction be-
tween elite scientists, who are very skilled experimenters, able to obtain
noise-free data, and normal scientists, who are not equally skilled and ob-
tain noisy data. To that end, we introduced two classes of agents that differ
with respect to their noise parameter: of the 100 agents in each population
considered in the simulations, there are 75 normal agents with a noise pa-
rameter ζN = .2 and 25 elite agents with ζE = 0. For ε we chose a value of
.1 and for α we experimented with values between 0 and 1. Figure 6 shows
the results for selected values of α = .1 and α = .9.

Figure 6: Black lines: elite agents; gray lines: normal
agents. Dashed lines: α = .1; solid lines: α = .9
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These results exhibit that normal agents (gray lines) benefit greatly if
all agents—elite and normal ones alike—give much weight to talking, as
they (the normal ones) then approach τ much more closely than they do if
all agents give only little weight to talking. On the other hand, elite agents
(black lines) are better off in the latter case. Nevertheless, since they do not
do much worse in that case, a kind of epistemic utilitarianism would suggest
that, provided the choice is between just these two options—either all agents
assign a high value to α or all agents assign a low value to α—the former is
preferable.

3.4. The Role of Reputation

Not only are some scientists better than others, some scientists are also more
reputed than others. In many situations, the views of the highly reputed sci-
entists weigh more heavily than the views of others. But should they do so?
Might this aspect of scientific practice not bear negatively on the prospects
for making progress? Perhaps scientists are generally bad at distinguishing
the good from the not-so-good scientists, and tend to assign a higher rep-
utation to the latter than to the former. This question can be investigated,
to some extent, in our two-dimensional model by replacing the update rule
(2.1) by

xi(t +1) =

α
∑ j∈Xi(t) x j(t)w j

∑ j∈Xi(t) w j
+(1−α)

(
τ + rnd(ζ )

)
if |Xi(t)|>1,

xi(t) otherwise,
(3.1)

where, as in equation (2.1), Xi(t) designates the set of agents that are both
i’s epistemic and its spatial neighbors at t, and where, as in equation (1.2),
w j represents the reputation of agent j.

The specific question we wanted to address was whether, in order to
improve the accuracy in truth approximation of a population in its entirety,
elite scientists should be given a higher reputation than normal scientists,
where the difference between these groups is understood in the way defined
above. To investigate this question, we set up three scenarios. In the first,
the agent’s status, qua elite (ζE = 0) or normal (ζN = .2), corresponds to
its reputation: elite agents are given a reputation w j of 2, normal agents
a reputation of 1. In the second scenario, this is reversed: elite agents are
given a reputation of 1, normal agents a reputation of 2. And in the third
scenario, both the elite and the normal agents have a reputation of 1.

In line with the findings of Douven and Riegler (2009), the results of
various computer experiments (using various combinations for the values
of the other parameters) suggest that there is no difference among the three
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settings, neither in terms of accuracy of convergence, nor in terms of speed
of convergence. As also explained in the aforementioned paper, this should
not be taken to support the cynical conclusion that, from a purely scientific
perspective, it is immaterial whether we assign a high reputation to the best
scientists or rather to the crackpots: reputation plays a role in science in
many ways, most of which go unaccounted for in the present model. Nev-
ertheless, it is noteworthy that in at least one way in which one would have
guessed reputation to matter, it does not matter.

3.5. Choosing Between Talking and Experimenting

In the computer experiments described above, we have been assuming that
whenever agents talk to other agents they also take into account evidence
pointing in the direction of τ . Clearly, this is an idealization. Human sci-
entists may perform an experiment one day and share their results only the
next day. One can model this to some extent by letting each agent at each
time decide which one of the following it wants to do: (i) gather evidence
pointing in the direction of τ by performing an experiment (or making ob-
servations, or some such); (ii) talk to those of its epistemic neighbors that are
in its spatial neighborhood at the given time (if any are). For this purpose,
we once more changed the update rule, as follows:

xi(t +1) =


αxi(t)+(1−α)

(
τ + rnd(ζ )

)
if |Xi(t)|>1 and rnd(1)>θ ,

∑ j∈Xi(t) x j(t)
|Xi(t)|

if |Xi(t)|>1 and rnd(1)6θ ,

xi(t) if |Xi(t)|=1.
(3.2)

Here, |Xi(t)| again designates the cardinality of the set of agents that are
both within i’s epistemic and within its spatial neighborhood at t; the func-
tion rnd(1) returns a uniformly distributed random real number in the inter-
val [0,1]; and θ is a threshold influencing the agent’s decision: a low value
of this threshold corresponds to a greater likelihood of updating one’s be-
lief on the evidence and one’s current belief only, a high value to a greater
likelihood of updating by talking to others only.

Our results show a clear, even if not very significant, difference in the
ability to approach τ for different values of θ . As can be seen in Figure 7,
convergence is more accurate, though slower, for higher values of the thresh-
old, that is, for a greater likelihood of talking (the graph shows the results
for ε = .1 and α = .1; the results proved relatively robust for variations in
these values).
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Figure 7: Dotted line: θ = .25; dashed line: θ = .5; solid line: θ = .75

4. Conclusion

Hegselmann and Krause’s model must be considered an important tool for
studying the effects of certain types of epistemic interaction in populations
of truth-seeking agents on these populations’ abilities to track the truth.
While their own model is highly idealized, it can easily be extended in ways
that allow for more realistic interpretations. Above, we have presented an
extension that introduces spatial neighborhoods, whereby one can drop the
assumption of the original HK model that each agent knows at all times the
beliefs of all other agents. The results about this extended model, which
were obtained by means of computer simulations, reconfirm the main con-
clusion of Douven and Riegler (2009): assuming the evidence to be noisy,
as in real life it tends to be, talking to others is an epistemically good strat-
egy for a population of truth seeking agents in that it helps the agents to get,
on average, closer to the truth, closer, at any rate, than if they disregard the
beliefs of others and purely go by the data and their own current beliefs.

In closing, we note that the model presented above, while already much
less idealized than the original HK model, is still rather limited in scope, as
in it all agents are supposed to hold single beliefs only. Real scientists in-
variably have a great many beliefs that, moreover, tend to be logically inter-
connected. A model that equips the agents with propositional theories rather
than a single numerical belief is described, and systematically explored, in
Douven and Riegler (2009).4

4 We are grateful to Christopher von Bülow for valuable comments on a draft version of
this paper.
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