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VOLUTIONARY

 

 E

 

PISTE-

 

mology has brought
forth the idea of science
as an evolutionary sys-
tem (cf. C

 

AMPBELL

 

 1974,
O

 

ESER

 

 1984, R

 

IEDL

 

 1983).
From systems theory of
evolution (R

 

IEDL

 

 1977)
and the theory of punc-
tuated equilibrium
(G

 

OULD

 

/E

 

LDREDGE

 

 1977)
we know that evolution
does not proceed homo-
geneously. Rather, peri-
ods of stasis are inter-
rupted by dramatic
changes. Over the last
few centuries we have
experienced science as a
dynamic enterprise with
several revolutions. Will
we now face the stasis of
science? These argu-
ments are not purely the-
oretical: In a recent
book, John H

 

ORGAN

 

 ex-
plicitly speaks of “The
End of Science” (1996).
In this paper, I outline the mechanisms of the “evo-
lution of science” by first finding an appropriate
perspective on the philosophy of science. Then, af-
ter a short review (and rejection) of H

 

ORGAN

 

’s thesis,
I identify three core problems to science. These
problems, which are mainly motivated by cognitive
psychology, have become serious since science
started to deal with complexity. Computer models
have been proposed to cope with this latest frontier
of science. However, such models have not received
acceptance among the scientific community due to
the presumingly arbitrary relationship between
computational model and “the reality out there”
(the reminiscence syndrome). I argue that this must

be true for any model, in-
cluding narrative and
mathematical models.
The success of models is
their predicative power. I
conclude that due to cog-
nitive limits of human sci-
entists, model-building is
also subject to limitations.
By using computational
devices, those limitations
might be transcended.

 

Different 
perspectives on 
scientific activity

 

Ralph G

 

OMORY

 

 (1995)
argues that the choice of
appropriate perspectives is
significant if we want to
make the unknown visible:
“[I]n distinguishing the
known or the unknown
from the unknowable, the
level of detail can be deci-
sive” (p88). 

This is also true if we
look at philosophy of science: to find the “proper”
explanation which both explains success and failure
of science. Unlike many other papers on the present
topic (e.g., L

 

AUDAN

 

 1977, S

 

TENT

 

 1978, 

 

VAN

 

 F

 

RAASSEN

 

1980, N

 

ERSESSIAN

 

 1987, F

 

AUST

 

 1984, G

 

IERE

 

 1993), I
will not focus on yet another philosophical treat-
ment. Rather, I will deal with the subject of science
in a pragmatic way which aims at the success of pre-
dictions. The following list locates this position
among all possible views on the philosophy of sci-
ence. Furthermore, the list summarizes what we po-
tentially can expect from a philosophy of mind. For
the rest of the paper, I will, triggered by recent dis-
cussions about the end of science, outline why we
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“Why is the universe knowable?” D

 

AVIES

 

 (1990)
wonders. In this paper, I argue that science is not a
matter of knowing any universe. Rather, it is a—as
history has shown—superior method of guidelines of
how to organize experiences yielding predictive power.
Historically, two types of models have given rise to the
effectiveness of science, narrative and mathematical
models. Based on cognitive psychological investiga-
tions, I point out that due to the human nature of sci-
entific reasoning both types of models are limited.
With the advent of computational devices scientific
investigation may now be extended to “externalized
deductions”, which are not subject to a limited short-
term memory and slow performance. To shift this to
computational science we have to recognize that mod-
els in all three approaches have basically the same
function. Although this might not solve the realist’s
question of how models relate to the world (at a deep
philosophical sense), it will guarantee the continued
existence of contemporary science beyond the cogni-
tive barrier.
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should concern ourselves with a possible limitation
to science at all and what a possible solution might
look like.

 

1

 

We must clearly outline what a philosophy of sci-
ence should do for us:
1. Is it a pure philosophical exercise where argu-

ments of various authors are compared, thus
building a discourse which does not necessarily
“ground” (H

 

ARNAD

 

 1990) in the subject (i.e., sci-
entific activity)? However, the ultimate goal of
any scientific inquiry is not to be an end in itself.
Rather, it has a constructive character in that it
allows us to extend the set of actions which we use
in order to predict and perceive our world in an
increasingly better way. 

2. Is it descriptive in order to explain what has hap-
pened to date? Any description may be based on
sociological models (cf. K

 

UHN

 

 1962), on a psycho-
logical approach (cf. G

 

IERE

 

 1993), or even on a
computational philosophy of science (cf.
T

 

HAGARD

 

 1988).
3. Is it a normative instrument which tells scientists

how to do science, such as the research method-
ology of the logical positivists (S

 

CHILPP

 

 1963) or
Karl P

 

OPPER

 

’s rejection of induction (1934)?
4. Is it generative in that it is capable of predicting

what the future of science will be? Can we expect
that the principal limits of science can be specified
analogously to G

 

ÖDEL

 

’s Incompleteness Theorem,
which poses limits on formal systems (e.g., C

 

ASTI

 

1996a)? Following an entirely positivist view on
science, can we even expect the end of science
since “all great revolutions are already behind us”
as proposed by the recent 

 

The End of Science

 

 book
by John H

 

ORGAN

 

 (1996)?
5. Or will it provide insights and mechanisms

which—in the long run—can be automatized
and therefore passed over to artificial artifacts
which then will carry out scientific reasoning?
Such proposals have been around for many de-
cades already, cf. the General Problem Solver of
N

 

EWELL

 

 and S

 

IMON

 

 (1972) and BACON of L

 

AN-

GLEY

 

 et al. (1987) More pragmatically, one may
think of the usage of computers in mathematics
as the first sign of this development. For exam-
ple, the famed four-color conjecture (A

 

PPEL

 

/H

 

AK-

EN

 

 1977), which demonstrated that problems
may no longer be tackled by traditional, human-
based methods. It made use of the power of hun-
dreds of hours of computation on supercomput-
ers in order to calculate individual cases rather
than to prove the problem in a traditional math-
ematical way.

The last two items especially may yield the expecta-
tion that in future, when the content of scientific
theories will have transcended the limitation of the
human mind, computers (or other artifacts) may
take over the business of exploring Nature.

What can such computers “learn” from human
scientific activities, and what does “Nature” refer to?
Are there limits to science carried out by humans? If
we don’t face any such limits, we barely need any
artificial extensions. Too much “pleasure” is in-
volved in the process of generating scientific knowl-
edge. But, as with transportation, walking also may
provide much pleasure, nevertheless society would
not be able to survive without motorized means of
transportation. This is a good demonstration of hu-
man nature: Although we have been using motor-
based vehicles for many decades, we still, and in fact
more than ever, enjoy our biological movement, not
to mention that our health depends on it. To draw
an analogy, in the future scientific reasoning might
be done by machines, nevertheless we will still enjoy
the intellectual challenge by tackling problems
which we can grasp with our (narrow) mind. In the
following chapter, I will present these restrictions in
more detail, starting from the positivist’s fear that
the big parts of the scientific pie have already been
eaten, leaving only crumbs for contemporary (and
future) scientists.

 

The end of science? 

 

I was recently reminded of the possibility that sci-
ence might come to an end by the provocative book
of John H

 

ORGAN

 

 (1996) with the self-explaining title

 

The End of Science

 

. “The great scientists want, above
all, to discover truth about nature”, John H

 

ORGAN

 

wrote in his 1996 book. And since “researchers
already mapped out physical reality”, all that is left
is to fill in details

 

2

 

. To be more concrete, “all” refers
to good science, which is capable of producing “sur-
prises”, i.e., scientific revolutions as has been intro-
duced by D

 

ARWIN

 

, E

 

INSTEIN

 

 and W

 

ATSON

 

 & C

 

RICK

 

.
However, “all” neither refers to the (boring?) scien-
tific activities of filling in all the gaps within the
map mentioned above, nor to applied science. And
it does not refer to what H

 

ORGAN

 

 calls “ironic sci-
ence”, those efforts of physicists and chaos-com-
plexity-researchers (“chaoplexologists” in H

 

ORGAN

 

’s
terminology, p192

 

) 

 

which argue for the existence of
high dimensional superstrings and life inside com-
puters. 

H

 

ORGAN

 

 dissociate himself from any relativist
view on science brought forth to a large audience by
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Thomas K

 

UHN

 

 (1962) in the early 60s

 

3

 

. He therefore
cannot help but think that all present scientific
knowledge is the complete framework to describe
and cope with reality. Taking a K

 

UHNIAN

 

 perspective
into account, he might rather—possibly correctly—
speak of an end of the 

 

current paradigm

 

.

 

4

 

 Indeed, as
Melanie M

 

ITCHELL

 

 (1995) in her response to H

 

OR-

GAN

 

’s previously published paper “From Complexity
to Perplexity” (1995, p1) pointed out, that “[t]he
specter of the “end of science” periodically appears
in the scientific and popular literature, often at the
end of one scientific era (e.g., N

 

EWTONIAN

 

 mechan-
ics), before the beginning of a new one (e.g., quan-
tum mechanics).”

According to her and other “chaoplexologists”,
the specialization in science “has certainly produced
great advances, but the problem of complex systems
demands approaches that span disciplines”. In other
words, the current set of paradigms needs to be sub-
stituted by another set. Now, will there really soon
be a change of paradigm in the traditional K

 

UHNIAN

 

sense?
Certainly we have to take evolutionary con-

straints into account. This is the line of argumenta-
tion which, for example, is followed by Colin
M

 

C

 

G

 

INN

 

 (1994). Like rats and monkeys which can-
not conceive of quantum mechanics, humans may
be unable to understand certain aspects which are
more sophisticated than our current theories in sci-
ence. M

 

C

 

G

 

INN

 

 primarily addresses the problem of
consciousness. He emphasizes that for humans to
grasp how subjective experience arises from matter
might be like “slugs trying to do F

 

REUDIAN

 

 psycho-
analysis—they just don’t have the conceptual equip-
ment.”

These issues make it clear that I am mainly inter-
ested in what we can learn from philosophy of sci-
ence and how we can apply this knowledge to
artificial systems in order to transcend the limits of
human mind. As mentioned above, due to the ever
incomplete aspects of psychology and sociology,
any further philosophical treatise will not make fur-
ther progress. An analogy makes it clear: Since we
are not able to build such sophisticated systems like
birds, we focus on technical realizations based upon
what we have learned about aerodynamics. Our air-
planes might have reached a level of enormous
complexity (A

 

RTHUR

 

 1993), yet they are not as ele-
gant in their movement as birds. However, planes
outperform natural solutions in speed and payload.
Likewise, we will construct artifacts that carry out
science probably less aesthetically but more effi-
ciently.

 

5

 

 

Certainly, no theory can ever reach the status of
universal applicability. This is also true for any the-
ory that wants to explain the dynamics of scientific
activity. Rather, it seems useful to explain science to
an extent which will allow us to formalize its key
mechanisms and to transfer it to artifacts.

 

What could the problems be?

 

The problems which may cause a decay of progress
in human science are rooted in its members: the
human scientists and their cognitive apparatus. In a
nutshell, as human beings in general, and as scien-
tists in particular we all suffer from essentially three
problems that limit our cognitive capabilities (R

 

IE-

GLER

 

 1994):
1. We are used to thinking in 

 

paradigms

 

 in the sense
of K

 

UHN

 

 (1962)

 

6

 

. Indoctrinated at school and uni-
versity, paradigms speed things up. They enable
us to forget about previous steps in our scientific
investigation and thus about the need to exhaus-
tively search the entire problem space

 

7

 

 which is
enormously large for scientific investigations. The
bad side of this is that this shortcut also limits our
way of thinking and problem solving.

2. The limitation of our short-term memory does
not allow us to compare more than seven knowl-
edge items at the same time (the well-known

 

chunks

 

 of M

 

ILLER

 

 1956). This even further restricts
our capability to entirely step through all corners
of nontrivial-sized problem spaces of which scien-
tific issues consist.

3. Faced with the limitations of our thinking and the
fact that interesting phenomena are complex by
nature, we have to ask: Which items must we
choose in order to prune the cognitive search tree

 

8

 

effectively? In other words, how shall we solve the
problem of 

 

relevance

 

 or the 

 

frame problem

 

 as it is
called in artificial intelligence. Daniel D

 

ENNETT

 

(1984) illustrates it with the following analogy
which will serve as a reference throughout this
paper: A robot, R1, as well as its improved descen-
dents, have to learn that its spare battery, its pre-
cious energy supply, is locked in a room with a
time bomb set to go off soon. To solve this prob-
lem the robot has to develop plans in order to
foresee effects of its actions. It fails because it does
not pay attention to the implications of its
planned actions. Taking possible side-effects into
account, however, does not help. As the real world
is very complex, an exhaustive list of all side-ef-
fects would take too long to take any action in
real-time. Hence, the robot must know how to
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distinguish between relevant and irrelevant side-
effects. But even this process of discrimination
needs an enormous amount of computation, all
the more as each of the possible effects must be
assigned with some (quantitative) credit in order
to evaluate their usefulness. 

All three items are subject to closer investigation in
the following sections. 

 

Limiting canalization 
through paradigms

 

Science is carried out by human beings whose work
is constrained by the current set of scientific meth-
ods, the well-known K

 

UHNIAN

 

 paradigm. K

 

UHN

 

(1962) describes the relationship between a scien-
tist and his or her paradigm as follows: “Scientists
work from models acquired through education and
through subsequent exposure to the literature
often without quite knowing or needing to know
what characteristics have given these models the
status of community paradigms.” (p46)

Such continuous repetitions of one and the same
methodical schema inevitably confine the future sci-
entist’s capability of problem-solving. More than 30
years before K

 

UHN

 

, José O

 

RTEGA

 

 

 

Y

 

 G

 

ASSET

 

 (1929/1994)
described the apparently automatic techniques for
problem-solving already quite straight forwardly. He
points out that scientists work with available meth-
ods like a machine. To achieve a wealth of results it
is not even necessary to have a clear concept about
their meaning and their foundations. This way, the
average savant contributes to the progress of science
as he is locked into his lab. O

 

RTEGA

 

 compares this
situation with that of a bee in its hive and the situa-
tion of a donkey in its whim-gin.

 

9

 

Similar to K

 

UHN

 

’s notion of paradigm, Paul F

 

EY-

ERABEND

 

 (1975) outlined the concept of stereotypi-
cal research schemata. He localized their roots in
the cognitive development starting in early child-
hood: “From our very early days we learn to react
to situations with the appropriate responses, lin-
guistic or otherwise. The teaching procedures both

 

shape 

 

the ‘appearance’, or ‘phenomenon’, and es-
tablish a firm 

 

connection with words, so that finally
the phenomena seem to speak for themselves…”
(p72)

FEYERABEND argues that starting in our early child-
hood we are acquiesced in an education that very
clearly outlines both the way we have to view the
world and the way we have to act in the world. Al-
ternatives are suppressed or referred to the realm of
fantasy. That is how our concept of reality emerges. 

The purpose of paradigms, very much like the
notion of reality (DIETTRICH 1995), is to secure ac-
quired scientific knowledge and to provide a base
for further developments. Historically, the scholas-
tic age is a typical example of where the lack of a
true hierarchical organization of concepts and par-
adigms finally led to its disintegration. Quite obvi-
ously, knowledge can only be acquired
incrementally step by step without being exposed
to the risk of starting from scratch over and over
again. Of course, as pointed out by Rupert RIEDL

(1977) for the realm of genetics, such hierarchies of
interdependent components on the one hand in-
crease the speed of development by magnitudes.
On the other hand, they are “burdens” with respect
to their canalizing effect since established struc-
tures define the boundary conditions for their fu-
ture evolution. Exactly the same applies to science:
In order to achieve progress we have to establish a
firm ground of paradigms through education. Each
time a new disciplines with a different set of para-
digms rises, it has to start from scratch and is thus
prone to a weak explanatory performance in terms
of details, as the new discipline of complexity re-
search demonstrates.

The psychology of science

Quite clearly, we can find limitations of deductive
reasoning, a key component within the scientific
method. Human brains are obviously not indefati-
gable automata capable of storing practically
unlimited amounts of temporary information as is
demonstrated by the well-studied problem of the
Towers of Hanoi (SIMON 1975): The number of sub-
goals which have to be simultaneously remem-
bered correlates to the number of disks. This means
that the subgoals have to be stored in short-term
memory which, as already pointed out by the
famous work of MILLER (1956), is quite limited.
People fail to solve the problem for towers with
more than three disks if they are not allowed to use
paper and pencil. Therefore, it is not surprising
that for systems that consist of a large number of
variables we use computer models. 

In psychology, an enormous amount of litera-
ture deals with the problem solving capacity in hu-
man beings. In the following I will present some
them which quite clearly show that our cognitive
capabilities for problem solving (or puzzle solving in
a more KUHNIAN terminology) are not only limited
but also prone to errors when it comes to investi-
gating complex systems.
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“Stack overflow ”

In the contemporary design of computers, a com-
ponent called the stack stores temporal informa-
tion necessary to evaluate mathematical functions.
This is similar to the carry when adding large num-
bers by hand; we also must not drop it in order to
obtain the correct result. Since computers are finite
implementations of TURING’s infinite machine, the
stack is finite, too. This can easily be demonstrated
by trying to evaluate an infinitely recursive func-
tion, i.e., a function which takes its results as argu-
ments over and over again. Depending on the
speed and stack size of the computer, a “stack over-
flow” error will occur within a few milliseconds,
indicating that the stack can no longer memorize
all sub-results. The stack in humans, also referred to
as short-term memory, does not need to be exposed
to infinitely recursive problems in order to show
the same behavior. 

The example of the mutilated checkerboard
(WICKELGREN 1974) is one such case. It asks whether
it is possible to arrange 31 domino pieces on a check-
erboard on which two diagonally opposite corner
squares have been cut off (yielding a 62 squares
board). According to the author, it is almost impos-
sible for a naive test person to find a quick solution.
Obviously, the number of squares is correct (2 times
31 yields 62) but the human mind is incapable of
managing the arrangement of black and red squares
on a two-dimensional area. However, the problem
becomes “trivial” if one simply counts the number
of black and red squares on the mutilated checker-
board which differs by two, whereas on the 31 dom-
ino pieces the number of imaged black and red
squares is equal. Gestalt psychology argues that we
are good at recognizing regularities in pattern, e.g.,
patterns that consist of black and red areas. But an
exact analysis of possible arrangements requires the
temporary storage of subresults which transcends
the capacity of our short-term memory. 

“It ain’t broke so don’t fix it”

In our everyday life, things are used in a particular
context, e.g., we use a hammer to drive nails into a
wall, matches to light a fire. In fact, things do not
seem to exist “outside” their domains of
functionality10. DUNCKER (1935/45) posed the task
to support a candle on a door. The available items
were matches and a box filled with tacks. Since the
test subjects considered the box as a mere container
they failed to empty it and to tack it to the door

where it could serve as a support for the candle. In
general, our thinking is canalized (or fixed) with
respect to the way we have learned to deal with
things. Since cognitive development deals with
both concrete and abstract entities, we assume that
this restriction also applies to abstract concepts
which prevail in scientific, especially mathematical
reasoning. 

The water-jug problem, studied by LUCHINS

(1942), provides empirical data for this assumption
of “mechanization of thoughts”. He asked test sub-
jects to measure out a specific quantity of water us-
ing a set of three jugs with known volume. The first
two problems LUCHINS posed could be solved by ap-
plying a certain sequence of pouring water from one
jug into another. Test subjects had no problems to
discover this procedure. Quite the contrary. They
got used to it and tried to apply it to further tasks.
Like the adage says, “It ain’t broke so don’t fix it”.
What the test subjects overlooked was that much
simpler procedures would have led to the same re-
sult, simply because their inductively working mind
was set to the previously successful strategy. 

The consequences of these psychological experi-
ments (among others) are clear. During academic
education we are subject to courses and seminars in
which we acquire a certain way of thinking, a para-
digm in the KUHNIAN sense. Recalling the problem
of DENNETT’s robot, the advantage of such canaliza-
tions is clear: thinking can be abbreviated (and thus
accelerated) by dropping computations about im-
plications which are already known. This way, en-
tire branches of our internal search tree can be
pruned, thus leaving more time to concentrate on
the unknown part. 

The general view of human problem solving

KUHN (1962) argued that reasoning within normal
science was puzzle-solving, i.e., it is concerned with
solving tricky problems. From a general point of
view, reasoning is a back-and-forth walk within the
problem space, with several decision points. We
might find that a particular branch does not yield
the desired result, therefore we have to return to a
previous decision point and try an alternative
branch. Unfortunately, by a priori cutting off parts
of the search tree through functional fixedness we
are simply blind to those alternative branches and
hence unable to find the solution to a particular
problem. Rather, as LUCHINS’ Einstellungseffekt
experiment demonstrates, we prefer to stick to
inductive solutions, very much like the turkey in
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Bertrand RUSSEL’s analogy (after CHALMERS 1982): It
started to believe in the charity of its owner—since
the latter fed him regularly—before it ended up as
Christmas meal.

As we have seen, for certain problems our cogni-
tive limits are quite narrow. In the following, I will
first relate these limits to concepts of Evolutionary
Epistemology (thus providing some ideas how these
limits have been come about). Then I will show that
the gap between these limits and the complexity of
systems we might consider to be “fancy calculator
games”, i.e., the computational approach to sci-
ence, is much bigger than one might assume.

Ratiomorphic apparatus

According to the LORENZIAN Evolutionary Episte-
mology, human beings feature a system of innate
forms of ideations which allows the anticipation of
space, time, comparability, causality, finality, and a
form of subjective probability or propensity (RIEDL

et al. 1992). This ratiomorphic apparatus has to be
distinguished from our rational abilities (LORENZ

1973/77, RIEDL et al. 1992) since the former indi-
cates that “…although this ideation is closely anal-
ogous to rational behavior in both formal and
functional respects, it has nothing to do with con-
scious reason.”

Each of these ideations can be described as innate
hypotheses (RIEDL 1981/84). These inborn teaching
mechanisms are mental adaptations to basic phe-
nomena that enable organisms to cope with them.
One of these mechanisms—the ability for detection
or discrimination of foreseeable and unforeseeable
events—serves as a foundation for all others. This
hypothesis of the apparent truth (Hypothese vom an-
scheinend Wahren) guides the propensity of a crea-
ture to make predictions with different degrees of
confidence, ranging from complete uncertainty to
firm certainty. Therefore, it produces prejudices in
advance or anticipations of phenomena to come.
The capability to anticipate is necessary for survival
and contributes to the success of every higher organ-
ism. 

The probability with which an unconditional
stimulus follows a conditioned one correlates with
the reliability of the response of the organism link-
ing the two. The consequence is that animals and
human beings behave as if the confirmation of an
expectation makes the same anticipation more cer-
tain in the future. This is also the case in science
where repeated confirmation of an expectation
leads to certainty.

Equipped with this innate set of hypotheses, can
we successfully face problems which are by far more
complex then those of ancient man? Ross ASHBY in
one of his last publications (1973) maintained
“…that the scientist who deals with a complex in-
teractive system must be prepared to give up trying
to ‘understand’ it.” In order to evaluate this state-
ment let us have a closer look at the concept of com-
plexity.

Complexity in science

In his remarks on constraints on science, Thomas
HOMER-DIXON (1995) points out that human cogni-
tive limits are due to the lack of infinite ability to
understand and manage the complex, multivariate
processes of ecological and social systems. The rela-
tionships in some of these systems are simply too
numerous and complex to be grasped, much less
controlled, by the human intellect.

What is complexity, and how does it relate to the
human mind? KOHLEN/POLLAK (1983) characterize
the “cognitive enterprise” as follows: “Cognitive sci-
ence has worked under the general assumption that
complex behaviors arise from complex computa-
tional processes. Computation lends us a rich vocab-
ulary for describing and explaining cognitive
behavior in many disciplines, including linguistics,
psychology, and artificial intelligence. It also pro-
vides a novel method for evaluating models by com-
paring the underlying generative capacity of the
model.” (p253)

They conclude their analysis of complexity with:
“[T]he computational complexity class cannot be
an intrinsic property of a physical system: it
emerges from the interaction of system state dy-
namics and measurement as established by an ob-
server.” (p264)

As pointed out by several authors (GRASSBERGER

1986, WALDROP 1992, HEYLIGHEN/AERTS 1998), com-
plexity is hard to define. Rather than trying yet an-
other definition, I will outline the inherent difficul-
ties in understanding systems which entail a non-
trivial amount of interdependent components.
Where does this non-triviality start? VON FOERSTER

(1985, 1990) provides a useful definition of the po-
tential complexity of algorithms when he distin-
guishes trivial from non-trivial machines. 

A trivial machine is a machine whose operations
are not influenced by previous operations. It can be
described by an operator (or function) p which maps
any input variable x to an output variable y accord-
ing to a transition table: p (x) → y. For such machines
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the problem of identification, i.e., deducing the struc-
ture of the machine from its behavior, can be solved,
since they are analytically determinable, indepen-
dent from previous operations, and predictable.

On the contrary, non-trivial machines, i.e., TUR-

ING-like devices, consist of a memory holding an
internal state z and two operators:
1. The “effect” function pz realizes the state depen-

dent mapping: pz (x) → y
2. The “state” function px performs the state transi-

tion within the non-trivial machine: px (z) → z’
The important issue here is that the identification
problem is not longer solvable even with very
small non-trivial machines. Consider a machine
with two states, four inputs, and four outputs. The
number of possible models that potentially imple-
ments such a relatively simple system is: 44 ⋅ 44 =
216. A similar machine with three instead of two
internal states requires 224 models. And if the num-
ber of internal states, in- and outputs is not known
to the experimenter, there are some 10155 possible
models of that machine. And this number is
transcomputable in the following sense: Hans
BREMERMANN (1962) claimed that “[n]o data pro-
cessing system, whether artificial or living, can
process more than 2 ⋅ 1047 bits per second per gram
of its mass”.11

Even if we consider the entire Earth in its over 4
billion years of existence as a computer, no more
than 1093 bits could have been processed, the so-
called BREMERMANN’s limit.

These dimensions make it clear that one should
not underestimate the complexity of systems with
even simple structures. In artificial life, BRAITEN-

BERG’s (1984) famous vehicles perfectly illustrate
this phenomenon that complex and hard-to-ana-
lyze behavior can be generated by simple rules. It
also confirms the view that biological cognitive ap-
paratus are not necessarily more complex than arti-
ficial ones. 

Using the concept of BRAITENBERG bricks in a
more abstract way, we may claim that the perceived
world consists of numerous such entities which
mutually interact without knowing the internal or-
ganization of each other. Let’s think of a society
where living and non-living entities form a web of
interdependencies. Such a web must be maintained
and controlled in one way or the other. Among oth-
ers, POPPER (1961) advocated the idea of piecemeal
social engineering, namely the idea to utilize sci-
ence as a tool for political reform. The following
example shows that such a program piecemeal en-
gineering is hopelessly inadequate.

Complex Problem Solving—An Example

Years before “SimCity” became a popular game,
Diettrich DÖRNER used simulation to scientifically
investigate the problem of social and economic
engineering. DÖRNER et al. (1983) created “Loh-
hausen”, a computational simulation of a small
city. Its economic situation is determined by the
city-owned clock company, by a bank, shops, prac-
tices of physicians, and so on. 24 female and 24
male test subjects have to take the office of the
city’s mayor for a total of 120 (simulated) months.
Since the clock company is publicly owned, the
mayor is able to massively influence the economy
of the city. Due to a large variety of parameters, like
the freedom to arbitrarily set the level of tax, the
test subjects had more freedom than in a real situa-
tions (DÖRNER 1989, FUNKE 1986). To measure the
effectiveness of the virtual mayor, a set of parame-
ters was defined, such as the “satisfaction” (i.e., the
weighted sum of single aspects of living comfort)
and size of the population, the financial situation
of city, company productivity (in terms of sales and
back orders), the income of the bank, the average
standard of living, the number of unemployed and
homeless people, the use of energy, etc. 

In summary, Lohhausen pointed out several
weak points of human problem solvers who face
complex systems. It’s interesting to note that these
“flaws” are similar to those of the robots in DEN-

NETT’s illustration of the frame problem. The test
subjects were likely to fail because they did not care-
fully analyze the current situation. Rather, they re-
ferred to a kind of “intuitive” interpretation of the
state. They also tended to neglect side-effects and
future long-term impacts. The test subjects thus
treated the complex net of interdependencies
among variables as simple linear accumulation of
facts. Even worse, the virtual mayors tended to focus
on a single core variable which then became the
starting point for a long chain of causal connec-
tions. Such strategies reduce cognitive efforts and
allow the outline of a clearly defined goal which is
inevitably linked to the improvement of that core
variable. They provide the illusion that the system
is controllable and make it easy to forget feedback
mechanisms.

Lohhausen was not only a prototype for a new
type of experiment within cognitive psychology. It
was also a pleading against the analytic method of
traditional analytic science. The investigation of
highly interconnected components of a complex
system—and sciences are increasingly face such sys-
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tems—by selecting a few variables is insufficient,
but this is all what human problem solvers can do.

Many scientists, especially positivists, may reject
the significance of such simulated worlds. Rather,
they emphasize that our scientific knowledge comes
exclusively from Nature, which a fancy simulation
program will never be able to represent. This per-
spective is true to the extent that indeed the rela-
tionship between a simulation and the “natural”
phenomenon with which it is associated remains
unclear. However, the crucial point is: What is the
“nature” of Nature? How can one claim that there
is a fundamental gap between the qualities of a sim-
ulation and the qualities of Nature. In other words,
where does the knowledge in (natural) sciences
come from?

Where does scientific Information 
and knowledge come from?
In his otherwise quite comprehensive treatise on
science, Atlee JACKSON (1995, 1996) pointed out
that there are solely three different approaches to
scientific information:
B Physical observations
B Mathematical models
B Computational explorations
By proposing this list, JACKSON seems to confuse
apples with pears. Humberto MATURANA (1978) very
clearly outlines the steps of the traditional scien-
tific methods. He distinguishes four cyclic steps:
1. Observation of a phenomenon that, henceforth,

is taken as a problem to be explained.
2. Proposition of an explanatory hypothesis in the

form of a deterministic system that can generate
a phenomenon isomorphic with the one ob-
served (or internal model, as will be outlined in
the next section).

3. Proposition of a computed state or process in the
system specified by the hypothesis as a predicted
phenomenon to be observed.

4. Observation of the predicted phenomenon.
Hence, physical observations refer to the process of
gathering data in order to build up an internal
model. They are not a model themselves and thus
are not a source of information. Observations with-
out a model do not make sense. Rather, they are
necessary for a model to fit the “facts”.

In addition, JACKSON missed another source of in-
formation: Scientific literature. As already pointed
out in the previous section, only if we are able to
“atomize” a chapter of scientific discovery into a
single “fact“, can we build up a hierarchical knowl-

edge system. This is in fact the great strength of the
scientific method: It first requires one to investigate
the observed phenomena and then to make the re-
sults available to others. In this sense I speak of “at-
omization”, of condensing the results of often
several years of research into chunks upon which
further research can be carried out without the ne-
cessity to repeat the previous experiments.

Furthermore, JACKSON’s use of language is mis-
leading for several reasons
B It suggests that only physical models are observa-
tions, i.e., they have an exclusive option on discov-
ering “reality”.
B Only through a formal mathematical approach
we can establish scientific models.
B Computation may be another source but it plays
the role of a scout who explores the unknown be-
fore civilization, i.e., mathematics and physics,
dare moving in to this area.

JACKSON makes this fundamental distinction ex-
plicit when he notes that these source are funda-
mentally different. For the following reason this
distinction is more of an obstacle than helpful.
Computer models are just as good as mathematical
models. Any formal logical-mathematical model
can be fully mapped onto a computational system.
This equivalency is basically what TURING showed
in 1936. Both the mathematical and the computa-
tional approach are capable of serving as a model.
The only difference is that they use different nota-
tions and therefore different deductive mecha-
nisms.

Despite this fundamental equivalence, computa-
tional models are not fully accepted as information
sources. Critics of the computational philosophy of
science movement disqualify such models as fancy
calculators (GLYMOUR 1993). HORGAN (1995, 1996)
even calls such approaches “ironic science” which
has no practical use. Either mathematical and com-
putational models both are valid instruments for
science or neither of them. It all depends on what
we expect the role of a model to be.

What is the very nature 
of a model in general? 
John HOLLAND et al. (1986) and Brian ARTHUR (1994)
outline the importance of models as temporary
internal constructs. They are constructs in that we
build them inside our minds on the basis of experi-
ence. They are temporary since they are exposed to
continuous modifications. This pragmatic model
concept can be outlined (and extended) as follows:
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1. In order to cope with an (apparently) complex
problem we create a model. Such a model may for
example consist of schemata (in the psychologi-
cal sense), i.e., if–then rules. This is the root of
scientific abstraction: we subsume a certain con-
textual configuration in the if part of such a sche-
ma and associate it with an expectation or action
on the right side, the then part. It is important to
note that in general neither guidelines are given
of how to choose the appropriate level of abstrac-
tion nor what expectations or actions to associate
with a particular if. 

2. We have seen that the human mind is subject to
several serious restrictions, such as the problem
of correct deductions in large systems, e.g., when
ruling a city as the example of Lohhausen has
shown. We are simply unable to concurrently fo-
cus on more than one chain of inference. Fortu-
nately, one feature of our internal models is that
it allows for simple deductions as compared to its
model, the “real world”

3. As a next step we act upon the result of these
deductions. 

4. If our actions are successful and our expectations
associated with the then part are fulfilled we are
likely to keep our mental model and think of it as
a “representation of the world“. Otherwise, we
may modify the set of rules, add new rules in or-
der to cover new contexts, or delete obsolete rules
or those which have been proven false (in the
sense of Popper). 

In other words: “[W]e use simple models to fill the
gaps in our understanding … This type of [induc-
tive] behavior… enables us to deal with complica-
tion: we construct plausible, simpler models that
we can cope with.” (ARTHUR 1994, p407)

This characterization of models not only resem-
bles the notion of scientific hypothesis, it also clearly
states that any act of thinking is based on such mod-
els. Some of them might be quite simple, others more
sophisticated with regard to the number of schemata
involved. As a consequence, not only scientific
knowledge is formulated this way, but also our
“knowledge about the world”. Ultimately, this leads
to the picture that when comparing a mathematical
or computational model with Nature, we in fact com-
pare two models with each other: the mathematical/
computational one with our Nature model we have
been constructing all our life. The roots of the latter
can be found in our childhood. Since this period is
no longer accessible by introspective reflection, we
tend to assign an objective ontology to our well-de-
veloped model of Nature (cf. VON GLASERSFELD 1987).

Due to this relativist (or constructivist) position
models are what Erwin SCHRÖDINGER (1961/64) orig-
inally assigned to metaphysics: scaffolds for our
thinking, and, consequently, scaffolds of the scien-
tific building.

Models as scaffolds of thinking

From a psychological point of view, there is no dif-
ference between scientific and nonscientific think-
ing. “Scientific Thinking… depends on the same
general cognitive process which underlie nonscien-
tific thinking” (FREEDMAN 1997, p3) Therefore, one
should expect that our mind in general works like
the scientific method commands. 

Indeed, SJÖLANDER (1995) proposes an alternative
perspective on thinking. In his view, mind actually
generates hypotheses in order to make sense of per-
ception. As long as the internal hypothesis is able to
let perceptions fit in, we will keep that hypothesis
rather than thinking of alternatives12. Despite the
simple structure of such internal models, they suffi-
ciently abstract from the perceived “real world” in
the sense that they allow for successful anticipations.
Thus, phrases in oral speech like “I want to draw your
attention to…” are obviously referring to the fact that
we need to build a “good” internal model if we want
to understand another person. In other words, we
need the opportunity to build (implicit) anticipa-
tions about what is to come13. SJÖLANDER illustrates
this with an example from biology: A dog hunting a
hare “…does not need a full picture of a recognizable
hare all the time to conduct a successful hunt. It is
able to proceed anyway, guided by glimpses of parts
of the hare, by movements in vegetation, by sounds,
by smell, etc. If the hare disappears behind a bush or
in a ditch the dog can predict the future location of
the hare by anticipating where it is going to turn up
next time, basing this prediction on the direction and
the speed the hare had when seen last.” (p2)

The need of internal models upon which we can
draw conclusions (the “innere Probierbühne” with
the words of SJÖLANDER) becomes even more clear if
we investigate the “world” of people who have a re-
duced spectrum of perception, e.g., blind people. Ol-
iver SACKS (1995) describes the case of man, Virgil,
who had been blind since early childhood. At the age
of fifty his eye sight was restored. Contrary to the
general expectation, this was no help for Virgil since
the way he has been living as a blind person was in-
compatible with the way normal sighted people per-
ceive and organize their world view. With effort and
practice, he was able to interpret some of the visual
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data in terms of the world as he had known it through
his other senses, but he has immense difficulty in
learning these interpretations. For instance, visually
he cannot tell his dog from his cat. For him, due to
the lack of visual impressions, the temporal aspect of
his world had priority. He recognized things by feel-
ing their surface in a particular order. He didn’t get
lost in his own apartment because he knew that after
entering there was furniture in a particular sequence
which he perceived in a temporal order. To put it
differently, he was living in world of anticipation. A
particular cupboard was followed by a table, so once
he reached the cupboard he anticipated reaching the
table with the next step. 

Having this relativist but nevertheless powerful
concept of models in mind we may now turn to a
final view on the relationship between models and
“reality”.

Models and “reality”

HORGAN (1995) quotes Jack COWAN, according to
whom “chaoplexologists” suffer from the reminis-
cence syndrome: “They say, ‘Look, isn’t this remi-
niscent of a biological or physical phenomenon!’
They jump in right away as if it’s a decent model for
the phenomenon, and usually of course it’s just got
some accidental features that make it look like
something.” (p74)

This syndrome resembles the old philosophical
conundrum of how to know that a model of a natural
system and the system itself bear any relation to each
other. How can a deductive operating system, such
as mathematics, allow for building bridges and fly-
ing to the moon?14 

First, it is useless to speak of “the system itself”
because we cannot make statements about that sys-
tem outside the framework of science without vio-
lating the scientific imperatives. But describing the
system with the methods of science is exactly what
we want to do. We thus cannot anticipate the result
of our inquiry (cf. VON GLASERSFELD 1987). 

Second, what we actually do by building a model is
to install a second source of information, namely the
model itself. Originally, we wanted to investigate the
observed system but due to its complexity and/or hid-
den features we are neither able to sufficiently explain
the historical behavior nor to anticipate the future be-
havior. Thus we build a simplified analogy which we
hope exhibits similar or identical behavior. In order to
gain maximum security we apply our set of scientific
methods. Of course, this is only relative security, as
POPPER already pointed out several decades ago: he ar-

gued against the idea that the inductive principle of
verification could ever lead to secure knowledge. He
was, however, not aware that his falsification impera-
tive cannot yield a secure knowledge either. One can
never be sure whether he or she actually included all
explanatory components that show that a theory is
definitely wrong (cf. the example in LAKATOS 1970).
DENNETT’s example, well-known in the artificial intel-
ligence community, demonstrates that any effort to
determine all relevant factors is a non-practical enter-
prise. We need not even to refer to GÖDEL’s Incom-
pleteness Theorem to find scientific reasoning
restricted within the vast complexity of combinato-
rics. It is appropriate to state that from an epistemo-
logical point of view such a situation is highly
unsatisfying. On the contrary, we—like the robot in
DENNETT’s example—cannot spend almost endless
time on building science by taking all possible (bor-
derline) cases into consideration. Fortunately, from a
pragmatic perspective, the scientific method—mainly
based on the reproducibility of experiments—enables
to build sufficiently reliable models and artifacts. 

Before I investigate the limits of internal models,
I first want to provide arguments as to why narrative
descriptions in natural language can be considered
as models, in order to underline the basic claim of
fundamental equivalence of all sources of scientific
knowledge.

Models in natural language

In a nutshell, natural language may serve as a basis
for internal models in the above sense, since
B language is constructed by humans;
B one can carry out deductions from statements
without being “grounded” (in the sense of HARNAD

1990);
B the correspondence to the “real” world is arbitrary
(from a general (i.e., population) point of view; for
individuals, it has communal character). 

A theory merely formulated in everyday language
may also serve as a model for science. In contrast to a
formal mathematical or computational model it has
neither clearly defined entities nor clear rules. Refer-
ring to VARELA (1990, p95), where the author com-
pares the crystal-clear world of chess with the world
of a car-driver, a scientific model built in natural lan-
guage is potentially more complex than a formal
model: states and rules are ambiguous and thus can-
not be easily handled by the human mind. (Cf. the
psychological findings on the performance of hu-
mans for Tower of Hanoi). In addition, the distinction
between natural language models and mathematical



Evolution and Cognition ❘ 47 ❘ 1998, Vol. 4, No. 1

“The End of Science”: Can We Overcome Cognitive Limitations?

models mirrors the superiority of the scientific
method over an everyday explanatory approach since
it makes use of crystal-clear and therefore more “de-
buggable” (in the sense of falsifiable) structures.

A prominent problem in philosophy addresses
the issue of genuine no-go areas (STEWART 1997): One
can propose scientific questions which are not solv-
able. Examples are time travel, the intention to go
north of the North Pole while staying on the surface
of the Earth, speaking about the time before Big Bang
(which originated time), and perhaps the current
search for a General Unified Theory. At first glance,
these are questions about something that obviously
does not exist. But within the framework I outlined
so far such questions are examples of the very nature
of language as a model. Again, no statement in nat-
ural language actually describes something. Rather,
it is a model to which we seek correspondence in the
set of phenomena we perceive. As has already been
acknowledged by many linguists (e.g., LENNEBERG et
al. 1967), language is a very powerful mechanism in
that it can create patterns of arbitrary length and
recursivity. Therefore, any natural language model
(as well as questions that arises from such models)
can be arbitrarily long and recursive. The only con-
straints arise in the process of synchronization
within a community, e.g., a scientific community
where a certain set of questions is simply ignored. 

The arbitrary correspondence to a “real” world is
also the place where the “symbol grounding” prob-
lem (HARNAD 1990) is located. It arises from the fact
that formal computations (according to the Physical
Symbol System Hypothesis of NEWELL/SIMON 1972)
are the manipulation of symbols devoid of meaning.
In his paper, HARNAD asks: “How can the semantic
interpretation of a formal symbol system be made
intrinsic to the system, rather than just parasitic on
the meanings in our heads? … The problem is anal-
ogous to trying to learn Chinese from a Chinese/
Chinese dictionary alone.” (p335)

From a realist point of view it would be desirable
for symbols to indeed have a semantic content. It
is true that the realist position distinguishes be-
tween computational tokens, which may be mean-
ingless symbols, and the representation per se.15 But
as FRANKLIN (1995) notes,
things do not come labeled.
This constructivist statement
is indeed the crucial point:
Symbols receive their mean-
ing through projection of an
observer, through his or her
interpretation. 

This instrumentalist point of view emphasizes the
notion of a knowledge that fits observations, or, as
VON GLASERSFELD (1990) puts it, “It is knowledge that
human reason derives from experience. It does not
represent a picture of the real world but provides
structure and organization to experience”. Searching
the correspondence between an internal model and
the world which is experienced as the “outside
world” is like the relationship between a key and a
lock. Many keys open a lock. VON GLASERSFELD (1984)
speaks of the crucial distinction between match and
fit: The fact that we can open a lock with a key does
not tell us anything about the structure of the lock.
It merely shows that the key is viable. In the same
sense we can interpret physical observations.

Where do these interpretations originate? In the
above argumentative framework, the notion of real-
ity and knowledge are subject to relativism. But how
can an individual get to know these ideas of an abso-
lute truth? In accordance with Ernst VON GLASERSFELD

(1982, p629), the process can be outlined as follows:
First, the active individual organizes his or her sen-
sorimotor experiences by way of building action
schemata. Only those schemata are maintained
which yield an equilibrium or help to defend it
against perturbations. Second, these operational
structures are abstracted from the sensorimotor “con-
tent” which originally gave rise to their creation.
Consequently, they are ascribed to things and thus
“externalized”. Continuously viable ascriptions yield
a belief in their independent existence and hence-
forth a belief in an objective truth. In other words,
the individual established an internal model upon
which he or she can carry out deductions “in an at-
mosphere of security” since such deductions strictly
follow a logical–mathematical calculus. 

Limitations of model-building 
are the limits of human sciences
Whatever approach we choose—the natural lan-
guage model, the formal-mathematical or the com-
putational model—we end up with a simplification
in our mind. We draw deductions and conclusions
upon this abstraction. Then we seek to fit (in the

sense of VON GLASERSFELD) the
results with the “outer world”.
In the case of natural language
models, these deductions are
traditional views of discourse,
which require rhetoric abili-
ties. In the case of mathemati-
cal models, we find the
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classical tools of strictly defined logical rules. Finally,
in computational models, we externalize deductions
in the sense that we compute them in artifacts rather
than in our own brains. Is this already a first sign of
future developments where more and more parts of
scientific reasoning will be shifted to automata?
Gain for speed may only be one advantage of this
“takeover”. The other advantage is the possibility to
overcome the shortcomings of deduction (as shown
in the case of Lohhausen and the Towers of Hanoi).

Fortunately, to give an outlook of the computa-
tional science as anticipated in this paper, making
use of models can be formulated algorithmically (cf.
HOLLAND et al. 1996 and RIEGLER 1997 for examples).
Since the pragmatic perspective of science also does
not provide mapping-rules between a model and the
experienced reality, such scientific machines may
gain true intellectual independence. This means that
in contrast to artificial intelligence programs whose
input is fed by humans and whose computational
output is interpreted by humans, scientifically rea-
soning devices will develop their own interpretation
of perceived data. 

Conclusion

The recent End of Science affair triggered by John
HORGAN reminds us that we have to seriously think
about the possibility that the progress in human sci-

ence will decay and finally arrive at a cognitive bar-
rier. In contrast to HORGAN’s romantic view of
science, according to which we have to seek for The
Truth, the matter of science is not the reality. Rather,
it consists of fairly sophisticated scaffolds which
both permit predictions and create meanings. 

In their analysis of the limits to scientific knowl-
edge, philosophers tend to forget that science is car-
ried out by human beings who are anything but
infallible machines. Hence, it pays to look at the cog-
nitive limits rather than at the theoretical limits of
disciplines such as the applicability of GÖDEL’s Theo-
rem to physics and to the philosophy of mind. Like
it is impossible to build infinitely high scaffolds, we
cannot manage infinitely large cognitive scaffolds.
The conclusion of an end of human science thus nei-
ther repeats previous we-already-know-everything
arguments nor forgets the merits of what we have
achieved so far. And, fortunately, it gives hope that a
possible trans-science, carried out by computational
devices, will at least preserve the powerful feature of
predicting. 
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Notes

1 Since philosophy of science can potentially be an endless
discourse of arguments referring recursively to each other,
I will apply OCCAM’s Razor in order to not get lost in a
“jungle” of arguments in favor of concentrating on the es-
sential issues. However, when it becomes necessary, I will
refer to more details, such as findings from psychology. 

2 Horgan earned many critics, among whom are ANGIER

(1996), CASTI (1996a, 1996b), HAYES (1996), MITCHELL

(1995), SILBER (1996), and STEWART (1997)
3 His main argument is the apparent paradoxical situation

in which he fancies such perspectives, i.e., the self-appli-
cability of a meta-science. “Is falsificationism falsifiable?”,
he asked Karl POPPER in one of the numerous interviews
which make up his book.

4 But this, of course, does not sound as dramatic as the title
he actually chose.

5 Relating Pierre TEILHARD DE CHARDIN’s (1966) concept of
“Noosphere” to the present World Wide Web is certainly
of historical and philosophical interest in that it demon-
strates that the idea of a global net is certainly not a prod-
uct of the most recent decades. Nevertheless, a mere
discussion of the possibility of such a net does not create
the net. But now since it is existent we can prove earlier
predictions of former thinkers.

6 As already pointed out by several authors before me (most
prominently by MASTERMAN 1978), KUHN did not provide
a strict definition of a paradigm. I do not think that such
a definition is possible, since it would require exhaustively
including psychological and sociological aspects of indi-
viduals. I therefore would like to define a paradigm as the
implicitly known set of standard procedures of how to per-
ceive and investigate a problem. Since perception is selec-
tive, problems may stay invisible.

7 By “problem space” I refer to the n-dimensional abstract
space set up by the n variables that characterize a problem.
Most likely, not all these variables are visible within a cur-
rent paradigm. Therefore, the current paradigm is a sub-
space (with lower dimensionality) of the entire problem
space. Problem solving is moving in the problem space by
varying one or more variables concurrently.

8 The notion of a search tree refers to the graph in the n-
dimensional search space whose knots are the decision
points.

9 Wolfgang STEGMÜLLER (1971) finds even harder words for
this dogmatism. He writes that we should feel sorry for the
average scientist since he or she is a uncritical, narrow-
minded dogmatist who wants to educated students in the
same way.

10 This psychological finding resembles the philosophy of
Martin HEIDEGGER. See DREYFUS (1991) for an overview.
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11 BREMERMANN calculated this number by evaluating the
maximum possible energy content within a gram of mass.

12 Cf. also the example of the mermaid by von GLASERSFELD 1983,
p54: Somebody changes the subjective interpretation of an
expression only if some context forces him or her to do so.

13 In my functional model of a cognitive apparatus (1997) I
take advantage of this “constructivist-anticipatory” princi-
ple: Behavior of cognitive creatures is controlled by sche-
mata which, once invoked, ask for sensory or internal data
only when they need them. In other words, the algorithm
neglects environmental events except for the demands of
the current action pattern. The algorithm leads to a signif-
icant decrease in performance costs since the simulation

algorithm need not provide the full environmental infor-
mation to the agent at every time step. This is in contrast
to the information-processing paradigm that defines the
cognitive system as a bottleneck. The essential features
must be selected among the wealth of “information” is pro-
vided by the “outside” in order to decrease the enormous
amount of complexity.

14 For the relationship between mathematics and physics in
particular see, for example, WIGNER (1960).

15 The hope of the artificial intelligence community is there-
fore that a formal model containing meaningless compu-
tational tokens need not necessarily imply a meaningless
representation of the system.
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